leetcode 546. Remove Boxes

Solution 讲解: leetcode 546. Remove Boxes


很巧妙的分析思路:T(i, j, k) 来表示 k个相同前缀,i-j 之间的最大值

自己写的 自底向上的  Bottom-Top

public class Solution {
    public int removeBoxes(int[] boxes) {
    	int len = boxes.length;
    	if(len==0) return 0;
    	int[][][] dp = new int[len][len][len+1];
    	for(int inter=0;inter=i
    				// if j 0
    				dp[i][j][k] = 0;
    				if(i==j)  {
    					dp[i][j][k]=(k+1)*(k+1);
    					continue;
    				}
    				if(dp[i+1][j][0]+(k+1)*(k+1)>dp[i][j][k]){
    					dp[i][j][k] = dp[i+1][j][0]+(k+1)*(k+1);
    				}
    				for(int h=i+1;h<=j;h++){
    					if(boxes[h]==boxes[i]){
    						if(dp[i+1][h-1][0] + dp[h][j][k+1]>dp[i][j][k]){
    							dp[i][j][k] = dp[i+1][h-1][0] + dp[h][j][k+1];
    						}
    					}
    				}
    			}
    		}
    	}
    	return dp[0][len-1][0];
    }
}

这一题很经典的dp题目,Solution给出如下的写法,也是dp常见的套路:

Top-Bottom:

public int removeBoxes(int[] boxes) {
    int n = boxes.length;
    int[][][] dp = new int[n][n][n];
    return removeBoxesSub(boxes, 0, n - 1, 0, dp);
}
    
private int removeBoxesSub(int[] boxes, int i, int j, int k, int[][][] dp) {
    if (i > j) return 0;
    if (dp[i][j][k] > 0) return dp[i][j][k];
        
    int res = (k + 1) * (k + 1) + removeBoxesSub(boxes, i + 1, j, 0, dp);
        
    for (int m = i + 1; m <= j; m++) {
        if (boxes[i] == boxes[m]) {
            res = Math.max(res, removeBoxesSub(boxes, i + 1, m - 1, 0, dp) + removeBoxesSub(boxes, m, j, k + 1, dp));
        }
    }
        
    dp[i][j][k] = res;
    return res;
}

Bottom-Top:


public int removeBoxes(int[] boxes) {
    int n = boxes.length;
    int[][][] dp = new int[n][n][n];
    	
    for (int j = 0; j < n; j++) {
    	for (int k = 0; k <= j; k++) {
    	    dp[j][j][k] = (k + 1) * (k + 1);
    	}
    }
    	
    for (int l = 1; l < n; l++) {
    	for (int j = l; j < n; j++) {
    	    int i = j - l;
    	        
    	    for (int k = 0; k <= i; k++) {
    	        int res = (k + 1) * (k + 1) + dp[i + 1][j][0];
    	            
    	        for (int m = i + 1; m <= j; m++) {
    	            if (boxes[m] == boxes[i]) {
    	                res = Math.max(res, dp[i + 1][m - 1][0] + dp[m][j][k + 1]);
    	            }
    	        }
    	            
    	        dp[i][j][k] = res;
    	    }
    	}
    }
    
    return (n == 0 ? 0 : dp[0][n - 1][0]);
}


你可能感兴趣的:(算法)