- 嵌入式数据库sqlite和rocksdb的介绍以及对比
问道飞鱼
数据库相关技术数据库sqliterocksdb
SQLite和RocksDB都是非常流行的嵌入式数据库系统,但它们的设计理念和应用场景有所不同。下面是对这两个数据库系统的详细介绍以及它们之间的主要区别。SQLite简介SQLite是一个轻量级的关系数据库管理系统,完全由C语言编写而成。它以单一文件的形式存储数据库,并且不需要独立的服务器进程或管理程序。SQLite直接嵌入到应用程序中,这使得它非常适合移动设备、嵌入式系统和桌面应用程序。特点嵌入
- 翻译 Compaction wiki
i_need_job
网址:https://github.com/facebook/rocksdb/wiki/Compaction有道CompactionCompactionalgorithmsconstraintheLSMtreeshape.Theydeterminewhichsortedrunscanbemergedbyitandwhichsortedrunsneedtobeaccessedforareadoper
- rust嵌入式key/value数据库
kk3909
rust
文章目录项目介绍sled已知问题如何使用leveldb-rs如何使用rust-rocksdb如何使用lmdb-rs如何使用功能对比性能测试对比插入不同的长度的key/valuemonotonicinsert/get/removerandominsert/get/remove项目介绍类型语言star简介sledrust4.6k嵌入式数据库,全新设计,beta尚未稳定LevelDBc++23.3kgo
- 提升代码搜索效率:深入解析现代代码搜索流程
yifeiliu338
hadooptf-idf
在现代软件开发中,代码搜索是一项不可或缺的功能,它直接关系到开发者的效率和项目的可维护性。本文将通过图文并茂的方式,详细解释一个高效的代码搜索流程,包括每一步的作用、使用的工具(如TreeSitter、RocksDB),并融入个人对提升代码搜索效率的思考与建议。流程概述图1:代码搜索流程图流程图从左上角开始,用户输入一个“查询”(query),随后经历一系列处理步骤,最终返回搜索结果。以下是每一步
- (十六)Flink 状态管理
springk
Flink全景解析flink大数据实时数据实时数据处理状态管理flink状态管理
目录状态类型KeyedStateKeyedState分类状态有效期(TTL)过期数据的清理OperatorStateBroadcastState状态存储StateBackends分类设置StateBackendRocksDBStateBackend详解在Flink架构体系中,状态(State)计算是其重要的特性之一。状态用来保存中间计算结果或缓存数据。比如:当应用程序搜索某些事件模式时,状态将存储
- Rocksdb Tuning
MOONICK
数据库
Rocksdb配置选项尤其繁多,想要获得真正的高性能,需要进行详细的调优,这是项复杂的工作,需要在实践中积累经验:https://www.jianshu.com/p/8e0018b6a8b6https://cloud.tencent.com/developer/article/2329992调优RocksDB通常就是在三个amplification之间做取舍:Writeamplification-
- 翻译 Basic Operations Compaction Filter
i_need_job
原文地址:https://github.com/facebook/rocksdb/wiki/Compaction-Filter(有道)RocksDBprovidesawaytodeleteormodifykey/valuepairsbasedoncustomlogicinbackground.Itishandyforimplementingcustomgarbagecollection,liker
- Flink大状态和Checkpoint调优
orange大数据技术探索者
#flink迁移flink大数据
文章迁移,待整理2.状态和Checkpoint调优2.1大状态调优我们生产大多数会使用fsState,memState程序挂了状态就丢了,应该没人会在生产使用,但是涉及到一些大状态,fsState效率很低,这时候会选择rocksDbState1.RocksDb为什么效率高基于LSMTree实现,类似Hbase的读写方式,state.backend.local-recovery:true写数据内存即
- SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage——论文泛读
妙BOOK言
论文阅读论文阅读KV存储lsm-tree
FAST2021Paper论文阅读笔记整理问题键值(KV)存储支持许多关键的应用和服务。它们在内存中执行快速处理,但通常受到I/O性能的限制。最近出现的高速NVMeSSD推动了新KV系统设计,以利用其低延迟和高带宽。挑战当前基于LSM树的KV存储未能充分发挥NVMeSSD的全部潜力。例如,在OptaneP4800X上部署RocksDB,相对于SATASSD,对于50%写入的工作负载,吞吐量仅提高了
- MatrixOne---MatrixKV产品体验
☞ ♚ ☜
docker容器java
MatrixKvMatrixKV是一个简单的分布式强一致KV存储系统,采用Pebble作为底层的存储引擎,MatrixCube作为分布式组件,以及自定义了最简单的读写请求接口。用户可以非常简单的在任意一个节点发起读写数据的请求,也可以从任意一个节点读到需要的数据。如果对TiDB架构比较熟悉的同学可以把MatrixKV等同于一个TiKV+PD,而MatrixKV其中使用的RocksDB换成了Pebb
- ledger-rocksdb
浪迹天涯1188
RocksDBisahighperformancembeddeddatabaseforkey-valuedata。https://crates.io/crates/rocksdb
- 【图文详解】一文全面彻底搞懂HBase、LevelDB、RocksDB等NoSQL背后的存储原理:LSM-tree 日志结构合并树
禅与计算机程序设计艺术
LSM树广泛用于数据存储,例如RocksDB、ApacheAsterixDB、Bigtable、HBase、LevelDB、ApacheAccumulo、SQLite4、Tarantool、WiredTiger、ApacheCassandra、InfluxDB和ScyllaDB等。在这篇文章中,我们将深入探讨LogStructuredMergeTree,又名LSM树:许多高度可扩展的NoSQL分布
- 翻译 BlobDB
i_need_job
网址:https://github.com/facebook/rocksdb/wiki/BlobDBBlobDBisessentiallyRocksDBforlarge-valueusecases.Thebasicidea,whichwasproposedintheWiscKeypaper,iskey-valueseparation:bystoringlargevaluesindedicatedb
- RocksDB是如何实现存算分离的
archimekai
微服务分布式架构
核心参考文献:Dong,S.,P,S.S.,Pan,S.,Ananthabhotla,A.,Ekambaram,D.,Sharma,A.,Dayal,S.,Parikh,N.V.,Jin,Y.,Kim,A.,Patil,S.,Zhuang,J.,Dunster,S.,Mahajan,A.,Chelluri,A.,Datye,C.,Santana,L.V.,Garg,N.,&Gawde,O.(202
- Flink问题解决及性能调优-【Flink rocksDB读写state大对象导致背压问题调优】
PONY LEE
Flink问题解决及性能调优flink大数据
RocksDB是Flink中用于持久化状态的默认后端,它提供了高性能和可靠的状态存储。然而,当处理大型状态并频繁读写时,可能会导致背压问题,因为RocksDB需要从磁盘读取和写入数据,而这可能成为瓶颈。遇到的问题Flink开发中遇到读写state大对象的问题,FlinkwebUI火焰图表现如下:从图上看,瓶颈卡在序列化与反序列化,结合业务逻辑代码,业务涉及state大对象的读写,并且是ValueS
- flink通过状态快照实现容错
m0_66520412
flink大数据
状态后端#Flink管理的键控状态是一种分片的键/值存储,以及每个键/值存储的工作副本键控状态的项保留在负责该键的TaskManager的本地某个位置。算子state也是需要它的计算机的本地状态。Flink管理的这种状态存储在状态后端中。有两种状态后端的实现可用——一种基于RocksDB,一种嵌入式键/值存储,可保持其工作状态disk,以及另一个基于堆的状态后端,该后端将其工作状态保存在Java堆
- Flink问题解决及性能调优-【Flink根据不同场景状态后端使用调优】
PONY LEE
Flink问题解决及性能调优flink大数据
Flink实时groupby聚合场景操作时,由于使用的是rocksdb状态后端,发现CPU的高负载卡在rocksdb的读写上,导致上游算子背压特别大。通过调优使用hashmap状态后端代替rocksdb状态后端,使吞吐量有了质的飞跃(20倍的性能提升),并分析整理。实例代码--SETtable.exec.state.ttl=86400s;--24hour,默认:0msSETtable.exec.s
- Flink State backend状态后端
小枫@码
Flinkflink大数据
概述Flink在v1.12到v1.14的改进当中,其状态后端也发生了变化。老版本的状态后端有三个,分别是MemoryStateBackend、FsStateBackend、RocksDBStateBackend,在flink1.14中,这些状态已经被废弃了,新版本的状态后端是HashMapStateBackend、EmbeddedRocksDBStateBackend。1、检查点有状态流应用中的检
- Flink 源码:TM 端恢复及创建 KeyedState 的流程
longLiveData
本文仅为笔者平日学习记录之用,侵删原文:https://mp.weixin.qq.com/s/eaALnpd_qHQg6fxI12fQjg本文会详细分析TM端恢复及创建KeyedState的流程,恢复过程会分析RocksDB和Fs两种StateBackend的恢复流程,创建流程会介绍Checkpoint处恢复的State如何与代码中创建的State关联起来。一、RocksDBKeyedStateB
- ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Sto...——论文泛读
妙BOOK言
论文阅读论文阅读lsm-tree
FAST2023Paper论文阅读笔记整理问题基于Log-StructureMerge-tree(LSM-tree)的键值(KV)系统被广泛部署。LSM-KV系统普遍存在的问题是写入停顿,指的是在大量写入压力下突然性能下降。先前的研究将写入停顿归因于资源短缺或调度问题。图1显示了RocksDB在各种存储设备上运行写密集型工作负载的结果。写停顿是普遍的,发生在所有类型的设备上,但触发条件不同;写停顿
- Flink TaskManager 内存管理机制介绍与调优总结
腾讯云大数据
flinkjvmjava
作者:董伟柯,腾讯CSIG高级工程师概要Flink的新版内存管理机制,要追溯到2020年初发布的Flink1.10版本。当时Flink社区为了实现三大目标:流和批模式下内存管理的统一,即同一套内存配置既可用于流作业也可用于批作业管控好RocksDB等外部组件的内存,避免在容器环境下用量不受控导致被KILL消除不同部署模式下配置参数的歧义,消除cut-off等参数语义模糊的问题提出了两个设计提案FL
- TaskExecutor统一内存配置(FLink FLIP-49翻译)
LS_ice
flink
文章目录目的:(1)解决流、批配置差异大(2)解决Streaming方式RocksDB配置复杂(3)去掉复杂、不确定、难以理解的配置公共接口修改建议统一流处理和批处理内存管理内存使用场景及特点统一显式和隐式内存申请将托管的堆上内存池和堆外内存池分离MemoryPools和配置方式框架堆内存(FrameworkHeapMemory)用户堆内存(TaskHeapMemory)用户堆外内存(TaskOf
- 翻译 RocksDB Overview
i_need_job
网址https://github.com/facebook/rocksdb/wiki/RocksDB-Overview有道RocksDBOverviewhttps://github.com/facebook/rocksdb.wiki.git1.IntroductionRocksDBstartedatFacebookasastorageengineforserverworkloadsonvariou
- Flink实例:状态管理State 过期时间TTL
大数据供成屎
flink大数据java
1State过期时间TTL使用flink进行实时计算中,会遇到一些状态数不断累积,导致状态量越来越大的情形。例如,作业中定义了超长的时间窗口,或者在动态表上应用了无限范围的GROUPBY语句,以及执行了没有时间窗口限制的双流JOIN等等操作。对于这些情况,经常导致堆内存出现OOM,或者堆外内存(RocksDB)用量持续增长导致超出容器的配额上限,造成作业的频繁崩溃。从Flink1.6版本开始引入了
- flink双流ioin的大状态如何解决和调优
暴走的贼宇
flinkjava大数据
Flink中的双流ioin操作(双流连接)通常涉及大状态的处理,这可能导致一些性能和状态管理的挑战。以下是解决和调优Flink中双流ioin大状态的一些建议:解决方案:增大任务管理器的堆内存:对于处理大状态的任务,增加Flink任务管理器的堆内存可以提供更多的内存空间来存储状态,减缓状态溢出的可能性。使用RocksDB状态后端:将Flink配置为使用RocksDB作为状态后端,RocksDB可以更
- 翻译 Terminology
i_need_job
原文网址:https://github.com/facebook/rocksdb/wiki/TerminologyNOTEforfutureedits:Pleasemaintainentriesinalphabeticalorder2PC(Two-phasecommit)Thepessimistictransactionscouldcommitintwophases:firstPrepareand
- 常见技术选型
独处人
MQRocketMQ,RabbitMQ,Kafka,ActiveMQNoSQLRedis,Memcache分布式计算Blink,Storm,SparkDB关系型TiDB,MySQL,MongoDB,CassandraKVLevelDB,Rocksdb,PalDB文件BerkeleyDB,MapDB,ChronicleQueue,SQLite,RSocket时序型Influxdb,HiTSDB,Op
- 数据库Database
StoneLiu999
dbsqlDatabase
文章目录关系型数据库数据库对比SQLite示例代码SQL语言运算符非关系型数据库键值对数据库文档型数据库RocksDB示例代码数据库(Database)是用于存储和管理数据的系统。它提供了一种结构化的方式来组织、存储、检索和更新数据,以满足不同应用程序的需求。数据库可以分为两类:关系型数据库和非关系型数据库。关系型数据库(RelationalDatabase):关系型数据库使用表格(表)来组织数据
- kafka 增量快照的使用
pekingK
kafka
增量快照RocksDB支持增量快照。不同于产生一个包含所有数据的全量备份,增量快照中只包含自上一次快照完成之后被修改的记录,因此可以显著减少快照完成的耗时。一个增量快照是基于(通常多个)前序快照构建的。由于RocksDB内部存在compaction机制对sst文件进行合并,Flink的增量快照也会定期重新设立起点(rebase),因此增量链条不会一直增长,旧快照包含的文件也会逐渐过期并被自动清理。
- RocksDB系列十四:Partitioned Index Filters
薛少佳
随着DB/mem使用越来越多,filter/indexblock的内存空间变得不可忽视。虽然cache_index_and_filter_blocks配置只允许filter/indexblock数据的一部分cache在blockcache中,但是还是会因为数据量的庞大影响RocksDB的性能。占据了过多的blockcache空间,这些空间本来可以用于缓存data当访问cachemiss时需要l
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla