Java数据结构——哈夫曼编码(数据压缩)

 数据压缩的操作步骤:

1、首先将原数据转为字节型数据;

2、将字节型数据转化为哈夫曼编码。使用Map方法将每一个字符按照的方式存储起来,其中String就代表该字节的哈夫曼编码;

3、再将哈夫曼编码进行数据压缩,按照8位压缩为数字。

import java.util.*;

public class Main {
    public static void main(String[] args) {
        String str = "This is test data.";
        byte[] bytes = str.getBytes();
        byte[] huffmanCodesBytes = huffmanZip(bytes);
        System.out.println("原数据为:");
        System.out.println(str);
        System.out.println("压缩后的数据为:");
        System.out.println(Arrays.toString(huffmanCodesBytes));
    }

    //将前面方法全部封装
    public static byte[] huffmanZip(byte[] bytes) {
        List nodes = getNodes(bytes);
        Node root = createHuffmanTree(nodes);
        Map map = getCodes(root);
        return zip(bytes, map);
    }

    //将字符串对应的byte[]数组,压缩
    public static byte[] zip(byte[] bytes, Map huffmanCodes) {
        //bytes数组中的字符串为二进制编码,对字符串进行压缩
        //将字符串每8位进行分割,再将其转换为byte类型。
        //例如:10101000,转换后为11011000,即转换之前为二进制补码,要将其转换为原码
        StringBuilder stringbuilder = new StringBuilder();
        for (byte b : bytes) {
            stringbuilder.append(huffmanCodes.get(b));
        }
        //统计转换后的字符串长度
        int len;
        //字符串长度可能为8的整数,也可能不是
        len = (stringbuilder.length() + 7) / 8;
        byte[] huffmanCodesBytes = new byte[len];
        int index = 0;
        for (int i = 0; i < stringbuilder.length(); i += 8) {
            String str;
            //如果字符串不满足8位
            if (i + 8 > stringbuilder.length()) {
                str = stringbuilder.substring(i);
            } else {
                str = stringbuilder.substring(i, i + 8);
            }
            huffmanCodesBytes[index++] = (byte) Integer.parseInt(str, 2);
        }
        return huffmanCodesBytes;
    }

    //实现哈夫曼树转化为哈夫曼编码
    //使用哈希表来存放哈夫曼编码,形式为:97(a) - 001
    public static Map huffmanCodes = new HashMap<>();
    //使用StringBuilder来存储哈夫曼编码
    public static StringBuilder stringbuilder = new StringBuilder();

    //对getCodes函数进行重载
    public static Map getCodes(Node node) {
        if (node == null) {
            return null;
        }
        getCodes(node.left, "0", stringbuilder);
        getCodes(node.right, "1", stringbuilder);
        return huffmanCodes;
    }

    //获取传入的节点node的哈夫曼编码,保存在stringbuilder中
    public static void getCodes(Node node, String code, StringBuilder stringbuilder) {
        StringBuilder stringbuilder2 = new StringBuilder(stringbuilder);
        stringbuilder2.append(code);
        if (node != null) {
            //当该节点为非叶子节点
            if (node.data == null) {
                //向左递归
                getCodes(node.left, "0", stringbuilder2);
                //向右递归
                getCodes(node.right, "1", stringbuilder2);
            } else {
                //该节点为叶子结点
                huffmanCodes.put(node.data, stringbuilder2.toString());
            }
        }
    }

    //将字符串转换为字节型
    public static List getNodes(byte[] bytes) {
        ArrayList nodes = new ArrayList();
        //遍历bytes,获得每个字节出现的次数
        //使用map来存储每个字节与字节出现的次数
        Map map = new HashMap<>();
        for (byte b : bytes) {
            Integer count = map.get(b);
            //当该字节第一次出现
            if (count == null) {
                map.put(b, 1);
            } else {
                //当该字节不是第一次出现
                map.put(b, count + 1);
            }
        }
        //把HashMap中每一个键值对转为Node对象
        for (Map.Entry entry : map.entrySet()) {
            nodes.add(new Node(entry.getKey(), entry.getValue()));
        }
        return nodes;
    }

    //哈夫曼树方法
    public static Node createHuffmanTree(List nodes) {
        while (nodes.size() > 1) {
            //从小到大排序
            Collections.sort(nodes);
            //取出节点权值最小的两个节点构成二叉树
            Node leftNode = nodes.get(0);
            Node rightNode = nodes.get(1);
            //重新构建新的二叉树,以之前两个节点为左右子节点
            Node parent = new Node(null, leftNode.value + rightNode.value);
            parent.left = leftNode;
            parent.right = rightNode;
            //删除两个子节点,并将父节点放入顺序表中
            nodes.remove(leftNode);
            nodes.remove(rightNode);
            nodes.add(parent);
        }
        return nodes.get(0);
    }

    //实现前序遍历
    public static void preOrder(Node root) {
        if (root != null) {
            root.preOrder();
        } else {
            System.out.println("该二叉树为空");
        }
    }
}

//实现Comparable接口
class Node implements Comparable {
    Byte data; //存放字符本身
    int value; //权值大小
    Node left;
    Node right;

    public Node(Byte data, int value) {
        this.data = data;
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "data=" + data +
                ", value=" + value +
                '}';
    }

    //实现从小到大排序
    @Override
    public int compareTo(Node o) {
        return this.value - o.value;
    }

    //前序遍历
    public void preOrder() {
        System.out.println(this);
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }
}


原数据为:
This is test data.
压缩后的数据为:
[105, 90, -83, 124, 111, 92, -14, 0]

 

你可能感兴趣的:(Java数据结构)