「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如图所示。
需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。
实际上,堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本书对两者不做特别区分,统一称作“堆”。
以下是根据文中内容整理的关于堆数据结构的相关方法的表格:
方法名 | 描述 | 时间复杂度 |
---|---|---|
push() | 元素入堆 | O(log n) |
pop() | 堆顶元素出堆 | O(log n) |
peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | O(1) |
size() | 获取堆的元素数量 | O(1) |
isEmpty() | 判断堆是否为空 | O(1) |
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 flag 或修改 Comparator 实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:
heap.java
/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);
/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();
/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 >= 替换为 <= )。
“二叉树”章节讲过,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆。
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。节点指针通过索引映射公式来实现。
如图所示,给定索引 i,其左子节点索引为 2i+1 ,右子节点索引为 2i+2,父节点索引为 (i-1)/2(向下整除)。当索引越界时,表示空节点或节点不存在。
my_heap.java
/* 获取左子节点索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取右子节点索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取父节点索引 */
int parent(int i) {
return (i - 1) / 2; // 向下整除
}
堆顶元素即为二叉树的根节点,也就是列表的首个元素
my_heap.java
/* 访问堆顶元素 */
int peek() {
return maxHeap.get(0);
}
给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。
考虑从入堆节点开始,从底至顶执行堆化。我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。
设节点总数为n,则树的高度为O(log n)。由此可知,堆化操作的循环轮数最多为O(log n),元素入堆操作的时间复杂度为O(log n)。代码如下所示:
my_heap.java
/* 元素入堆 */
void push(int val) {
// 添加节点
maxHeap.add(val);
// 从底至顶堆化
siftUp(size() - 1);
}
/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {
while (true) {
// 获取节点 i 的父节点
int p = parent(i);
// 当“越过根节点”或“节点无须修复”时,结束堆化
if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
break;
// 交换两节点
swap(i, p);
// 循环向上堆化
i = p;
}
}
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。
“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。
my_heap.java
/* 元素出堆 */
int pop() {
// 判空处理
if (isEmpty())
throw new IndexOutOfBoundsException();
// 交换根节点与最右叶节点(交换首元素与尾元素)
swap(0, size() - 1);
// 删除节点
int val = maxHeap.remove(size() - 1);
// 从顶至底堆化
siftDown(0);
// 返回堆顶元素
return val;
}
/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = left(i), r = right(i), ma = i;
if (l < size() && maxHeap.get(l) > maxHeap.get(ma))
ma = l;
if (r < size() && maxHeap.get(r) > maxHeap.get(ma))
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i)
break;
// 交换两节点
swap(i, ma);
// 循环向下堆化
i = ma;
}
}