Hadoop之排序

一、排序概述

排序是MapReduce框架中最重要的操作之一。MapTask和ReduceTask都会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序的数据均会被排序,而不管逻辑上是否需要。默认是按照字典顺序排序,且实现该排序的方法是快速排序

对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率到达一定阈值后,再对缓冲区中的数据进行一次快速排序,将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序

对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写到磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大的文件;如果内存中文件大小或者数据超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。

二、排序分类:

1、部分排序

MapReduce根据输入记录的键对数据集排序,保证输出的每个文件内部有序;

2、全排序

最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce提供的并行架构;

3、辅助排序(分组排序)

在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到同一个reduce方法时,可以采用分组排序;

4、二次排序

在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

三、自定义排序WritableComparable

(1)原理分析

bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序。

@Override
public int compareTo(FlowBean o) {

	int result;
		
	// 按照总流量大小,倒序排列
	if (sumFlow > bean.getSumFlow()) {
		result = -1;
	}else if (sumFlow < bean.getSumFlow()) {
		result = 1;
	}else {
		result = 0;
	}

	return result;
}

 

 

 

你可能感兴趣的:(Hadoop)