矩阵快速幂(模板+例题)

矩阵快速幂推导过程:https://blog.csdn.net/u012061345/article/details/52224623
矩阵快速幂求解数列第n项的关键在于计算系数矩阵A。之后就是套模板了。
模板(求解斐波那契数列第n项):

#include 
#include 
#define LL long long
#define mod 2147493647

using namespace std;

struct mat
{
    LL m[2][2];
};

mat operator*(mat x, mat y)
{
    mat ret;
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            ret.m[i][j]=0;
            for(int k=0;k<2;k++)
                ret.m[i][j]=(x.m[i][k]*y.m[k][j]%mod+ret.m[i][j]%mod)%mod;
        }
    }
    return ret;
}

mat pow_mat(mat a,LL n)
{
    mat ret;
    memset(ret.m,0,sizeof(ret.m));
    for(int i=0;i<2;i++)
        ret.m[i][i]=1;
    while(n)
    {
        if(n&1)
            ret=ret*a;
        a=a*a;
        n>>=1;
    }
    return ret;
}

int main()
{
    mat A={1,1,1,0};
    int t;
    while(~scanf("%d",&t))
    {
        mat x0;
        memset(x0.m,0,sizeof(x0.m));
        x0.m[0][0]=1;
        x0.m[1][0]=1;
        x0=pow_mat(A,t-1)*x0;
        printf("%lld\n",x0.m[0][0]);
    }
    return 0;
}

例题:https://cn.vjudge.net/contest/299842#problem/N
题意:
给出数列 F n F_n Fn=2* F n − 2 F_{n-2} Fn2+ F n − 1 F_{n-1} Fn1+ n 4 n^4 n4
t组数据,每组给出数列的前两项和一个数n,求数列的第n项。
首先构造系数矩阵:

mat A=
{
1,4,6,4,1,0,0,
0,1,3,3,1,0,0,
0,0,1,2,1,0,0,
0,0,0,1,1,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,0,1,
1,4,6,4,1,2,1
};

此时, x n − 1 x_{n-1} xn1=

{
(n-1)^4
(n-1)^3
(n-1)^2
(n-1)^1
(n-1)^0
a
b
};

x n x_n xn=

{
n^4
n^3
n^2
n^1
n^0
a
b
};

满足 x n x_n xn=A x n − 1 x_{n-1} xn1
代码:

#include 
#include 
#define LL long long
#define N 7
#define mod 2147493647
using namespace std;

struct mat
{
    LL m[N][N];
};

mat operator*(mat x, mat y)
{
    mat ret;
    for(int i=0;i<N;i++)
    {
        for(int j=0;j<N;j++)
        {
            ret.m[i][j]=0;
            for(int k=0;k<N;k++)
                ret.m[i][j]=(x.m[i][k]*y.m[k][j]%mod+ret.m[i][j]%mod)%mod;
        }
    }
    return ret;
}

mat pow_mat(mat a,LL n)
{
    mat ret;
    memset(ret.m,0,sizeof(ret.m));
    for(int i=0;i<N;i++)
        ret.m[i][i]=1;
    while(n)
    {
        if(n&1)
            ret=ret*a;
        a=a*a;
        n>>=1;
    }
    return ret;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        LL a,b,n;
        scanf("%lld%lld%lld",&n,&a,&b);
        if(n==1)
            printf("%lld\n",a);
        else if(n==2)
            printf("%lld\n",b);
        else
        {
            mat x0;
            memset(x0.m,0,sizeof(x0.m));
            x0.m[0][0]=16;
            x0.m[1][0]=8;
            x0.m[2][0]=4;
            x0.m[3][0]=2;
            x0.m[4][0]=1;
            x0.m[5][0]=a;
            x0.m[6][0]=b;
            mat A=
            {
                1,4,6,4,1,0,0,
                0,1,3,3,1,0,0,
                0,0,1,2,1,0,0,
                0,0,0,1,1,0,0,
                0,0,0,0,1,0,0,
                0,0,0,0,0,0,1,
                1,4,6,4,1,2,1
            };
            x0=pow_mat(A,n-2)*x0;
            printf("%lld\n",x0.m[6][0]);
        }
    }
    return 0;
}

你可能感兴趣的:(矩阵快速幂(模板+例题))