quotes_historical_yahoo

最近在学习爬数据,这是对matplotlib.finance下的quotes_historical_yahoo模块的功能学习。该模块用于从雅虎财经查询有用的信息。

Help on function quotes_historical_yahoo inmodule matplotlib.finance:

查询调用格式如下,其中ticker指的是股票简称(如‘AXP’,‘SOHU’,‘XINA’等);date1指的是数据起始日期,date2指的是数据终止日期。返回数据时,顺序是从过去到现在,也就是最近的数据会在最下方。

quotes_historical_yahoo(ticker, date1,date2, asobject=False, adjusted=True, cachename=None)

   Get historical data for ticker between date1 and date2.

   

看注释说这个模块好像已经被抛弃了……我看的学习资料有点老了吗……

之后可以调用quotes_yahoo_historical_ochl或quotes_yahoo_historical_ohlc来完成同样的需求。

   This function has been deprecated in 1.4 in favor of

   `quotes_yahoo_historical_ochl`, which maintains the original argument

   order, or `quotes_yahoo_historical_ohlc`, which uses the

   open-high-low-close order.  Thisfunction will be removed in 1.5

   

   See :func:`parse_yahoo_historical` for explanation of output formats

   and the *asobject* and *adjusted* kwargs.

   

   Parameters

   ----------

   ticker : str

       stock ticker

   

   date1 : sequence of form (year, month, day), `datetime`, or `date`

       start date

   

   date2 : sequence of form (year, month, day), `datetime`, or `date`

       end date

   

   cachename : str or `None`

       is the name of the local file cache. If None, will

       default to the md5 hash or the url (which incorporates the ticker

       and date range)

   

以下为给出的使用实例:

   Examples

   --------

   >>> sp = f.quotes_historical_yahoo('^GSPC', d1, d2, asobject=True,adjusted=True)

   >>> returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:]

   >>> [n,bins,patches] = hist(returns, 100)

   >>> mu = mean(returns)

   >>> sigma = std(returns)

   >>> x = normpdf(bins, mu, sigma)

   >>> plot(bins, x, color='red', lw=2)

你可能感兴趣的:(python)