- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- Python OpenCV教程从入门到精通的全面指南【文末送书】
一键难忘
pythonopencv开发语言
文章目录PythonOpenCV从入门到精通1.安装OpenCV2.基本操作2.1读取和显示图像2.2图像基本操作3.图像处理3.1图像转换3.2图像阈值处理3.3图像平滑4.边缘检测和轮廓4.1Canny边缘检测4.2轮廓检测5.高级操作5.1特征检测5.2目标跟踪5.3深度学习与OpenCVPythonOpenCV从入门到精通【文末送书】PythonOpenCV从入门到精通OpenCV(Ope
- 【雕爷学编程】MicroPython手册之 ESP32-CAM 机器人目标跟踪
驴友花雕
机器人目标跟踪人工智能嵌入式硬件pythonMicroPythonESP32-CAM
MicroPython是为了在嵌入式系统中运行Python3编程语言而设计的轻量级版本解释器。与常规Python相比,MicroPython解释器体积小(仅100KB左右),通过编译成二进制Executable文件运行,执行效率较高。它使用了轻量级的垃圾回收机制并移除了大部分Python标准库,以适应资源限制的微控制器。MicroPython主要特点包括:1、语法和功能与标准Python兼容,易学
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 数据标注师学习内容汇总
试着
数据标注师学习数据标注师
目录文本标注图像标注语音标注文本标注词性标注1词性标注2实体标注关系标注事件标注1事件标注2意图标注关键词标注分类标注问答标注对话标注图像标注拉框标注关键点标注2D标注3D标注线标注目标跟踪标注OCR标注图像分类标注语音标注语音切割转写语音校对标注拼音和停顿标注
- 【数据标注师】目标跟踪标注
试着
数据标注师目标跟踪人工智能计算机视觉数据标注师目标跟踪标注
目录一、**目标跟踪标注的四大核心挑战**二、**五阶能力培养体系**▶**阶段1:基础规则内化(1-2周)**▶**阶段2:复杂场景处理技能**▶**阶段3:专业工具mastery**▶**阶段4:领域深度专精▶**阶段5:效率突破方案三、**精度控制五大核心技术**四、**质检与错误防御体系**1.**四维质检法**:2.**高频错误防御表**:五、**持续进阶体系**1.**复杂场景专项**
- 目标跟踪领域经典论文解析
♢.*
目标跟踪人工智能计算机视觉
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!目标跟踪是计算机视觉领域的一个
- 基于均值偏移算法的动态目标跟踪研究
Zoiny_楠
算法均值算法目标跟踪
摘要:目标跟踪技术是计算机视觉领域中重要研究课题之一,在人类生活、军事侦察、工业生产、医疗诊断、交通管理等多方面,都有广泛的应用,研究目标跟踪对人类生活、工程应用等具有现实的指导意义。在基于视觉的目标跟踪算法中,经典的Mean-Shift算法以其理论科学有效、操作简单易实现,跟踪性能较好等优势,一直是众多学者研究的热点。可算法也存在着许多缺陷。例如目标模型中混有背景信息的干扰,给目标定位带来了偏差
- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- 多目标跟踪
行走的小部落
目标跟踪人工智能计算机视觉
侦探联盟:多目标跟踪大作战适合对象:高中生关键点:多目标跟踪、传统方法、深度学习、卡尔曼滤波、匈牙利算法、CNN、Re-ID序章:神秘的闹市阴影夜晚的星城,一场盛大的街头音乐节即将开幕。灯光下,形形色色的人在广场上游走。人声、音乐声交织成宏大的交响。突然,警局接到一封匿名信:有人要在音乐节上搞破坏,还不止一个人。“多目标追踪联盟”火速集结:他们擅长在人群中盯梢,每一个侦探都有独特的本领。今天,他们
- 【图像处理入门】10. 计算机视觉基础:从人脸识别到文档矫正
小米玄戒Andrew
图像处理:从入门到专家图像处理计算机视觉人工智能CV算法opencvpython
摘要本文聚焦计算机视觉经典应用场景,带你实现人脸识别、文档扫描矫正和目标跟踪三大项目。通过Haar级联分类器、透视变换、CamShift算法等技术,结合OpenCV实战代码,掌握从特征检测到图像几何变换的完整流程,将图像处理知识升级为计算机视觉工程能力。一、项目1:基于Haar级联的人脸识别系统1.技术原理Haar级联分类器通过级联多个简单的Haar特征强分类器,快速检测图像中的目标(如人脸)。核
- 基于YOLOv8的人脸识别与跟踪系统设计与实现
YOLO实战营
YOLOui目标检测目标跟踪深度学习
1.项目背景与意义随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可
- OpenCV Video 模块使用指南(Python 版)
ice_junjun
OpenCVopencvpython人工智能
一、模块概述video模块是OpenCV的视频分析核心,提供以下核心功能:背景建模:运动检测(MOG2/KNN背景减除)光流法:物体运动估计(LK金字塔光流)目标跟踪:单目标/多目标跟踪(KCF、MOSSE等算法)视频分析:运动轨迹提取、异常行为检测二、核心功能详解与实战1.背景减除(运动检测)1.1算法对比算法名称特点适用场景核心参数示例代码MOG2混合高斯模型,自适应学习率室内外场景(如监控视
- 多假设跟踪关联目标进行数据匹配
ytttr873
算法
多假设跟踪(MultipleHypothesisTracking,MHT)是一种强大的数据关联方法,广泛应用于目标跟踪、数据匹配等领域。它通过同时考虑多个假设来解决目标关联问题,能够有效处理目标数量变化、目标交叉、遮挡以及噪声干扰等情况。1.多假设跟踪(MHT)的基本原理1.1数据关联问题在目标跟踪和数据匹配中,数据关联是一个核心问题。简单来说,我们需要将传感器观测到的数据(如雷达回波、摄像头图像
- 深度学习篇---OC-SORT实际应用效果
Ronin-Lotus
深度学习篇上位机知识篇深度学习pythonOC-SROT
OC-SORT算法在实际应用中的效果可从准确性、鲁棒性、效率三个核心维度评估,其表现与传统多目标跟踪算法(如SORT、DeepSORT)相比有显著提升,尤其在复杂场景中优势突出。以下是具体分析:一、准确性:目标关联更可靠1.遮挡场景下的ID保持能力优势表现:传统算法(如SORT)依赖卡尔曼滤波预测目标位置,当目标长时间遮挡时,预测误差会累积导致轨迹丢失或ID切换。OC-SORT通过以观测为中心的恢
- 多目标跟踪笔记2023
AI算法网奇
数据结构与算法目标跟踪笔记人工智能
目录cvpr2023多目标跟踪算法汇总:MixFormerV2ovtrack模型284MMotionTrackFocusOnDetails:OnlineMulti-objectTrackingwithDiverseFine-grainedRepresentation1、摘要2、方法Observation-CentricSORT:RethinkingSORTforRobustMulti-Object
- 毕设--基于Flask的智能个人财务管理系统
做科研的狗
flaskpython后端毕设毕业设计scikit-learn
本文旨在探讨基于Flask框架的智能个人财务管理系统的设计与实现,该系统旨在帮助用户更好地管理个人财务,提供一系列便捷且实用的功能。系统的主要功能包括用户注册与登录、收支管理、预算制定与管理、财务分析与报告、资产管理、财务目标跟踪、数据导入与导出、以及管理员管理功能等。从技术层面来看,前端将采用Vue框架以提升用户界面的交互体验,后端则选用Python语言结合Flask框架进行开发,数据库方面计划
- 基于中心点预测的视觉评估与可视化流程
视觉AI
目标检测+轨迹预测目标跟踪算法人工智能计算机视觉数据结构算法
基于中心点预测的视觉评估与可视化流程基于中心点预测的视觉评估与可视化流程一、脚本功能概览二、可视化与评分机制详解1.真实框解析2.调用模型处理帧3.预测中心点与真实值的对比4.打分策略5.图像可视化三、目录结构要求四、运行方式五、应用场景与拓展思路六、总结七,完整代码基于中心点预测的视觉评估与可视化流程在图像或视频目标跟踪任务中,我们经常需要评估预测中心点与真实中心点之间的差异,以衡量模型的精度和
- 基于BoxMOT的目标检测与跟踪全流程详解
Hi20240217
学习环境搭建目标检测人工智能计算机视觉
基于BoxMOT的目标检测与跟踪全流程详解一、技术背景与应用场景二、环境搭建2.1Docker容器配置2.2目录结构规划三、关键资源准备3.1数据集选择3.2模型选择3.3视频素材准备四、核心组件安装4.1基础组件安装4.2OpenCV定制编译4.3下载BoxMOT框架,配置环境变量五、目标跟踪实战演示六、性能评估七、参考链接一、技术背景与应用场景目标检测与跟踪是计算机视觉领域的核心技术,广泛应用
- KMeans, KNN, Meanshift
机器灵
基础算法理论KMeansKNNMeanshift
这三个玩意,因为要么带K,要么带Mean,所以吗,放在一起介绍一下:Meanshift因为我本身是图像处理出身,最早接触的是Meanshift,其经常用于图像分割,目标跟踪等方面,下面首先说一下Meanshift:算法步骤:在未被标记的数据点中随机选择一个点作为起始中心点center;找出以center为中心半径为radius的区域中出现的所有数据点,认为这些点同属于一个聚类C。同时在该聚类中记录
- 基于OpenCV的物体跟踪:CSRT算法
知舟不叙
opencv算法人工智能物体跟踪
文章目录引言一、系统概述二、CSRT算法简介三、核心代码解析1.初始化跟踪器和摄像头2.主循环结构3.目标选择与跟踪初始化4.目标跟踪与结果显示5.资源释放四、系统使用说明五、完整代码六、总结引言目标跟踪是计算机视觉领域的重要应用之一,广泛应用于视频监控、人机交互、增强现实等领域。本文将介绍如何使用OpenCV中的CSRT跟踪器实现一个简单的实时目标跟踪系统,通过摄像头捕获视频流并对用户选定的目标
- 粒子滤波器解读
DuHz
人工智能神经网络深度学习机器学习信号处理信息与通信
粒子滤波器解读引言粒子滤波器是一种强大的非线性滤波技术,用于估计动态系统的状态。与卡尔曼滤波器不同,粒子滤波器可以处理任意的非线性性和非高斯性,这使其在机器人定位、目标跟踪、计算机视觉等领域得到广泛应用。基本概念粒子滤波器的核心思想是使用一组加权样本(称为"粒子")来近似目标状态的后验概率分布。每个粒子代表状态空间中的一个可能状态,而其权重则表示该状态的可能性或概率。想象在一个迷雾中的森林里寻找宝
- opencv学习:光流估计及完整代码实现
夜清寒风
学习计算机视觉opencv人工智能
光流估计是什么?是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。基本原理(1)亮度恒定:同一点随着时间的变化,其亮度不会发生改变。(2)小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。(3)空间一致:一个场景上邻近的点投影到图像上也是邻近点,
- 无人机视觉:连接像素与现实世界 —— 像素与GPS坐标双向转换指南
Lunar*
算法与优化无人机
在无人机航拍应用中,一个核心的需求是将图像上的某个点与现实世界中的地理位置精确对应起来。无论是目标跟踪、地图测绘还是农情监测,理解图像像素与其对应的经纬度(GPS坐标)之间的关系至关重要。本文将详细介绍如何实现单个像素坐标到GPS坐标的双向转换,并提供基于Python的实现思路。核心问题像素坐标->GPS坐标:已知图像上一个点的像素坐标(u,v),以及拍摄时无人机的状态(位置、姿态、相机参数),如
- 深入理解与实现GM-PHD滤波算法:C++应用指南
快撑死的鱼
算法杂谈C++(C语言)算法大揭秘算法c++开发语言
前言多目标跟踪(Multi-TargetTracking,MTT)是自动驾驶、雷达系统、机器人视觉等领域中的重要技术。高斯混合概率假设密度(GaussianMixtureProbabilityHypothesisDensity,GM-PHD)滤波器作为一种有效的多目标跟踪算法,因其能够在处理杂波和新生目标时表现出色而广受关注。本文将详细介绍GM-PHD滤波算法,并通过C++代码示例展示其实现。希望
- 计算机视觉笔记 第三章:目标检测
唐风绸繆
计算机视觉人工智能计算机视觉目标检测视觉检测
计算机视觉笔记:第一章图像分类-CSDN博客计算机视觉笔记第二章图像语义分割-CSDN博客计算机视觉笔记第三章:目标检测-CSDN博客计算机视觉第四章:图像识别、目标跟踪-CSDN博客计算机视觉第五章多目视觉(立体视觉)-CSDN博客标定图像中目标的位置,并给出目标的类别目标检测和语义分割的区别:语义分割:包含低层的像素级别的处理方法,也包含高层的语义级别的处理方法目标检测:基本都是高层的语义级别
- YOLO学习笔记 | YOLOv8与卡尔曼滤波实现目标跟踪与预测(附代码)
单北斗SLAMer
YOLO学习从零到1目标检测目标跟踪YOLOpython
YOLOv8与卡尔曼滤波实现目标跟踪与预测一、原理与公式二、分模块代码实现1.**卡尔曼滤波模块**2.**目标检测模块(YOLOv8)**3.**跟踪器模块(SORT算法)**4.**主程序流程**三、关键优化点四、匈牙利算法原理与公式五、Python代码实现1.**基础版匈牙利算法(手动实现)**2.**优化版(基于`scipy`库)**六、在目标跟踪中的应用示例1.**代价矩阵计算(IOU)
- 目标检测YOLO实战应用案例100讲- 无人机平台下露天目标检测与计数
林聪木
目标检测YOLO无人机
目录知识储备基于YOLOv8改进的无人机露天目标检测与计数一、环境配置与依赖安装二、核心代码实现(带详细注释)1.改进YOLOv8模型定义(添加注意力机制)2.无人机视角数据增强(drone_augment.py)3.多目标跟踪与计数(tracking_counter.py)4.完整推理流程(main.py)三、关键技术优化点四、数据集配置示例前言目标检测算法研究现状分析基于检测方法的目标计数研究
- BoxMOT:Yolov8+多目标跟踪方案_笔记1
山山而川_R
视觉大模型_1YOLO
代码地址:boxmot一、安装环境1、condacreate-ntrackpython==3.10-ycondaactivatetrack二、boxmot安装安装以linux系统为例,假定该系统已经安装有python>=3.8,且建立好虚拟环境。将boxmot安装到yolo_tracking目录:gitclonehttps://github.com/mikel-brostrom/yolo_trac
- Windows下创建MOT15数据集的符号链接显示“设备不支持符号链接。”的问题
编程绿豆侠
windows深度学习目标跟踪
写在前面最近在做目标跟踪的项目,然后我想从最基本的SORT算法开始做起,在下载完项目代码,准备看看视频的跟踪效果时,发现需要下载MOT15数据集,按照官方的说明,需要在下载并解压MOT15数据集后创建一个符号链接,如下所示。上面这个是linux环境下的命令,我参考了这篇博文,尝试在Windows环境下创建符号链接,然后出现如下报错:原因我在上网查询资料的时候发现SORT算法的github中有人提出
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本