字符串对象 PyListObject
PyListObject对象支持元素的插入、添加、删除等操作,你内部存放的是PyObject*
指针。
定义
[listobject.h]
typedef struct {
PyObject_VAR_HEAD
/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */
/*ob_item为指向元素列表的指针,实际上,Python中的list[0]就是ob_item[0]*/
PyObject **ob_item;
/* ob_item contains space for 'allocated' elements. The number
* currently in use is ob_size.
* Invariants:
* 0 <= ob_size <= allocated
* len(list) == ob_size
* ob_item == NULL implies ob_size == allocated == 0
* list.sort() temporarily sets allocated to -1 to detect mutations.
*
* Items must normally not be NULL, except during construction when
* the list is not yet visible outside the function that builds it.
*/
/*
* PyListObject 会提前申请一块大内存,来为分配做准备,allocated 就代表着
* PyListObject 能够使用的内存数
*/
Py_ssize_t allocated;
} PyListObject;
创建与维护
创建对象
python 提供了唯一的方法PyList_New
来创建列表,同时其参数size
用于指定列表初始元素个数
[listobject.c]
PyObject *
PyList_New(Py_ssize_t size)
{
PyListObject *op;
size_t nbytes;
#ifdef SHOW_ALLOC_COUNT
static int initialized = 0;
if (!initialized) {
Py_AtExit(show_alloc);
initialized = 1;
}
#endif
if (size < 0) {
PyErr_BadInternalCall();
return NULL;
}
/* Check for overflow without an actual overflow,
* which can cause compiler to optimise out */
//检查size的大小是否合理
if ((size_t)size > PY_SIZE_MAX / sizeof(PyObject *))
return PyErr_NoMemory();
nbytes = size * sizeof(PyObject *);
if (numfree) {
//缓冲池可用
numfree--;
op = free_list[numfree];
_Py_NewReference((PyObject *)op);
#ifdef SHOW_ALLOC_COUNT
count_reuse++;
#endif
} else {
//缓冲池不可用,创建新的对象
op = PyObject_GC_New(PyListObject, &PyList_Type);
if (op == NULL)
return NULL;
#ifdef SHOW_ALLOC_COUNT
count_alloc++;
#endif
}
if (size <= 0)
op->ob_item = NULL;
else {
//为对象指针列表分配指定的内存空间
op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
if (op->ob_item == NULL) {
Py_DECREF(op);
return PyErr_NoMemory();
}
memset(op->ob_item, 0, nbytes);
}
// 设置对象的参数
Py_SIZE(op) = size;
op->allocated = size;
_PyObject_GC_TRACK(op);
return (PyObject *) op;
}
PyListObject
的缓冲池free_list
维护的对象个数是一定的。具体有下面代码指定
[listobject.c]
#ifndef PyList_MAXFREELIST
#define PyList_MAXFREELIST 80
#endif
static PyListObject *free_list[PyList_MAXFREELIST];
static int numfree = 0;
假设,我们第一次调用PyList_New
函数来创建列表对象,
即使用PyList_New(6)
。那么我们将得到下图这样的列表结构
设置元素
[listobject.c]
int
PyList_SetItem(register PyObject *op, register Py_ssize_t i,
register PyObject *newitem)
{
register PyObject *olditem;
register PyObject **p;
//检查对象
if (!PyList_Check(op)) {
Py_XDECREF(newitem);
PyErr_BadInternalCall();
return -1;
}
//检查索引的合法性
if (i < 0 || i >= Py_SIZE(op)) {
Py_XDECREF(newitem);
PyErr_SetString(PyExc_IndexError,
"list assignment index out of range");
return -1;
}
//设置元素(即修改指针列表中,对应索引位置处存储的指针)
p = ((PyListObject *)op) -> ob_item + i;
olditem = *p;
*p = newitem;
//调整olditem的引用计数
Py_XDECREF(olditem);
return 0;
}
那么,在利用PyList_SetItem
实现向列表设置元素,在python运行list[3]=100
,那么之前的对象将变为下图
插入元素
插入元素与设置元素是完全不同的操作,插入元素会在原有的结构中加入新的元素,如下所示
>>> lst = [1, 2, 3, 4, 5]
>>> lst[3] = 100
>>> lst
[1, 2, 3, 100, 5]
>>> lst.insert(3, 99)
>>> lst
[1, 2, 3, 99, 100, 5]
可以看出,插入操作实际上改变了列表对象的内存结构
[listobject.c]
int
PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
{
//类型检查
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
return ins1((PyListObject *)op, where, newitem);
}
[listobject.c]
static int
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
{
Py_ssize_t i, n = Py_SIZE(self);
PyObject **items;
if (v == NULL) {
PyErr_BadInternalCall();
return -1;
}
// 溢出检查
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
// 调整列表容量
if (list_resize(self, n+1) == -1)
return -1;
// 确定插入点
// 参数where为负表示反向插入
if (where < 0) {
where += n;
if (where < 0)
where = 0;
}
if (where > n)
where = n;
// 插入元素
items = self->ob_item;
for (i = n; --i >= where; )
items[i+1] = items[i];
Py_INCREF(v);
items[where] = v;
return 0;
}
调整类别的容量
[listobject.c]
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{
PyObject **items;
size_t new_allocated;
Py_ssize_t allocated = self->allocated;
/* Bypass realloc() when a previous overallocation is large enough
to accommodate the newsize. If the newsize falls lower than half
the allocated size, then proceed with the realloc() to shrink the list.
*/
// 不需要重新申请内存,这时只需调整ob_size即可
if (allocated >= newsize && newsize >= (allocated >> 1)) {
assert(self->ob_item != NULL || newsize == 0);
Py_SIZE(self) = newsize;
return 0;
}
/* This over-allocates proportional to the list size, making room
* for additional growth. The over-allocation is mild, but is
* enough to give linear-time amortized behavior over a long
* sequence of appends() in the presence of a poorly-performing
* system realloc().
* The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
*/
// 计算重新申请内存的大小
new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6);
/* check for integer overflow */
// 溢出判断
if (new_allocated > PY_SIZE_MAX - newsize) {
PyErr_NoMemory();
return -1;
} else {
new_allocated += newsize;
}
//扩展列表
if (newsize == 0)
new_allocated = 0;
items = self->ob_item;
if (new_allocated <= (PY_SIZE_MAX / sizeof(PyObject *)))
PyMem_RESIZE(items, PyObject *, new_allocated);
else
items = NULL;
if (items == NULL) {
PyErr_NoMemory();
return -1;
}
self->ob_item = items;
Py_SIZE(self) = newsize;
self->allocated = new_allocated;
return 0;
}
通过insert
插入的示意图
同时,python的list
还支持append
操作
[listobject.c]
int
PyList_Append(PyObject *op, PyObject *newitem)
{
if (PyList_Check(op) && (newitem != NULL))
return app1((PyListObject *)op, newitem);
PyErr_BadInternalCall();
return -1;
}
[listobject.c]
static int
app1(PyListObject *self, PyObject *v)
{
Py_ssize_t n = PyList_GET_SIZE(self);
assert (v != NULL);
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
if (list_resize(self, n+1) == -1)
return -1;
Py_INCREF(v);
PyList_SET_ITEM(self, n, v);
return 0;
}
删除元素
即python中的remove
操作
>>> lst = [0,1, 2, 3, 4, 5]
>>> lst
[0, 1, 2, 3, 4, 5]
>>> lst.remove(3)
>>> lst
[0, 1, 2, 4, 5]
其实现代码
[listobject.c]
static PyObject *
listremove(PyListObject *self, PyObject *v)
{
Py_ssize_t i;
// 对list进行遍历并比较
for (i = 0; i < Py_SIZE(self); i++) {
//PyObject_RichCompareBool
//return
//-1 if error
// 1 if op
// 0 if not op
int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
if (cmp > 0) {
if (list_ass_slice(self, i, i+1,
(PyObject *)NULL) == 0)
Py_RETURN_NONE;
return NULL;
}
else if (cmp < 0)
return NULL;
}
PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
return NULL;
}
[listobject.c]
/* a[ilow:ihigh] = v if v != NULL.
* del a[ilow:ihigh] if v == NULL.
*
* Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's
* guaranteed the call cannot fail.
*/
static int
list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
{
/* Because [X]DECREF can recursively invoke list operations on
this list, we must postpone all [X]DECREF activity until
after the list is back in its canonical shape. Therefore
we must allocate an additional array, 'recycle', into which
we temporarily copy the items that are deleted from the
list. :-( */
PyObject *recycle_on_stack[8];
PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
PyObject **item;
PyObject **vitem = NULL;
PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
Py_ssize_t n; /* # of elements in replacement list */
Py_ssize_t norig; /* # of elements in list getting replaced */
Py_ssize_t d; /* Change in size */
Py_ssize_t k;
size_t s;
int result = -1; /* guilty until proved innocent */
#define b ((PyListObject *)v)
if (v == NULL)
n = 0;
else {
if (a == b) {
/* Special case "a[i:j] = a" -- copy b first */
v = list_slice(b, 0, Py_SIZE(b));
if (v == NULL)
return result;
result = list_ass_slice(a, ilow, ihigh, v);
Py_DECREF(v);
return result;
}
v_as_SF = PySequence_Fast(v, "can only assign an iterable");
if(v_as_SF == NULL)
goto Error;
n = PySequence_Fast_GET_SIZE(v_as_SF);
vitem = PySequence_Fast_ITEMS(v_as_SF);
}
if (ilow < 0)
ilow = 0;
else if (ilow > Py_SIZE(a))
ilow = Py_SIZE(a);
if (ihigh < ilow)
ihigh = ilow;
else if (ihigh > Py_SIZE(a))
ihigh = Py_SIZE(a);
norig = ihigh - ilow;
assert(norig >= 0);
d = n - norig;
if (Py_SIZE(a) + d == 0) {
Py_XDECREF(v_as_SF);
return list_clear(a);
}
item = a->ob_item;
/* recycle the items that we are about to remove */
s = norig * sizeof(PyObject *);
/* If norig == 0, item might be NULL, in which case we may not memcpy from it. */
if (s) {
if (s > sizeof(recycle_on_stack)) {
recycle = (PyObject **)PyMem_MALLOC(s);
if (recycle == NULL) {
PyErr_NoMemory();
goto Error;
}
}
memcpy(recycle, &item[ilow], s);
}
if (d < 0) { /* Delete -d items */
memmove(&item[ihigh+d], &item[ihigh],
(Py_SIZE(a) - ihigh)*sizeof(PyObject *));
list_resize(a, Py_SIZE(a) + d);
item = a->ob_item;
}
else if (d > 0) { /* Insert d items */
k = Py_SIZE(a);
if (list_resize(a, k+d) < 0)
goto Error;
item = a->ob_item;
memmove(&item[ihigh+d], &item[ihigh],
(k - ihigh)*sizeof(PyObject *));
}
for (k = 0; k < n; k++, ilow++) {
PyObject *w = vitem[k];
Py_XINCREF(w);
item[ilow] = w;
}
for (k = norig - 1; k >= 0; --k)
Py_XDECREF(recycle[k]);
result = 0;
Error:
if (recycle != recycle_on_stack)
PyMem_FREE(recycle);
Py_XDECREF(v_as_SF);
return result;
#undef b
}
即,这里的删除操作是通过内存移动来实现的(即memmove
).其如下图所示
缓存池
在创建PyListObject
时,用的了缓存池free_lists
。那么,free_lists
中缓存的对象是何时创建的呢?
答案是在PyListObject
的销毁时,即函数list_dealloc
中
[listobject.c]
static void
list_dealloc(PyListObject *op)
{
Py_ssize_t i;
PyObject_GC_UnTrack(op);
Py_TRASHCAN_SAFE_BEGIN(op)
// 销毁列表中存储的数据
if (op->ob_item != NULL) {
/* Do it backwards, for Christian Tismer.
There's a simple test case where somehow this reduces
thrashing when a *very* large list is created and
immediately deleted. */
i = Py_SIZE(op);
while (--i >= 0) {
// 处理对象的引用计数
Py_XDECREF(op->ob_item[i]);
}
// 释放内存
PyMem_FREE(op->ob_item);
}
if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
// 内存池还未存满,则将其存入内存池
free_list[numfree++] = op;
else
// 内存池已满,直接释放掉
Py_TYPE(op)->tp_free((PyObject *)op);
Py_TRASHCAN_SAFE_END(op)
}
需要注意的是,即使对象将保存进对象缓存池,python也会将列表对象中的数据指针数组释放掉,这是为了避免过度消耗系统内存。如下图,显示了存在于对象缓存池中的对象结构的例子
参考
《Python 源码剖析》