from numpy import *
import matplotlib.pyplot as plt
print(doc)
def loadDataSet(fileName, delim=’\t’):
fr = open(fileName)
stringArr = [line.strip().split(delim) for line in fr.readlines()]#先for遍历,再strip去掉空格,然后用split分解为制表符的单词.
datArr = [map(float, line) for line in stringArr]
return mat(datArr)
def pca(dataMat, topNfeat=9999999):
“”“pca
Args:
dataMat 原数据集矩阵
topNfeat 应用的N个特征
Returns:
lowDDataMat 降维后数据集
reconMat 新的数据集空间
“”“
# 计算每一列的均值 0是列,1是行
meanVals = mean(dataMat, axis=0)
# print 'meanVals', meanVals
# 每个向量同时都减去 均值
meanRemoved = dataMat - meanVals
# print 'meanRemoved=', meanRemoved
# cov协方差=[(x1-x均值)*(y1-y均值)+(x2-x均值)*(y2-y均值)+...+(xn-x均值)*(yn-y均值)+]/(n-1)
'''
方差:(一维)度量两个随机变量关系的统计量
协方差: (二维)度量各个维度偏离其均值的程度
协方差矩阵:(多维)度量各个维度偏离其均值的程度
当 cov(X, Y)>0时,表明X与Y正相关;(X越大,Y也越大;X越小Y,也越小。这种情况,我们称为“正相关”。)
当 cov(X, Y)<0时,表明X与Y负相关;
当 cov(X, Y)=0时,表明X与Y不相关。
'''
covMat = cov(meanRemoved, rowvar=0)
# eigVals为特征值, eigVects为特征向量
eigVals, eigVects = linalg.eig(mat(covMat))
# print 'eigVals=', eigVals # print 'eigVects=', eigVects
# 对特征值,进行从小到大的排序,返回从小到大的index序号,重点.
# 特征值的逆序就可以得到topNfeat个最大的特征向量
'''
>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0]) # index,1 = 1; index,2 = 2; index,0 = 3
>>> y = np.argsort(x)
>>> y[::-1]
array([0, 2, 1])
>>> y[:-3:-1]
array([0, 2]) # 取出 -1, -2
>>> y[:-6:-1]
array([0, 2, 1])
'''
eigValInd = argsort(eigVals)
# print 'eigValInd1=', eigValInd
# -1表示倒序,返回topN的特征值[-1 到 -(topNfeat+1) 但是不包括-(topNfeat+1)本身的倒叙],注意,不包括下一个本身.
eigValInd = eigValInd[:-(topNfeat+1):-1]
# print 'eigValInd2=', eigValInd
# 重组 eigVects 最大到最小
redEigVects = eigVects[:, eigValInd]
# print 'redEigVects=', redEigVects.T
# 将数据转换到新空间
# print "---", shape(meanRemoved), shape(redEigVects)
lowDDataMat = meanRemoved * redEigVects
reconMat = (lowDDataMat * redEigVects.T) + meanVals
# print 'lowDDataMat=', lowDDataMat
# print 'reconMat=', reconMat
return lowDDataMat, reconMat
def replaceNanWithMean():
datMat = loadDataSet(‘input/13.PCA/secom.data’, ’ ‘)
numFeat = shape(datMat)[1]
for i in range(numFeat):
# 对value不为NaN的求均值
# .A 返回矩阵基于的数组
meanVal = mean(datMat[nonzero(~isnan(datMat[:, i].A))[0], i])
# 将value为NaN的值赋值为均值
datMat[nonzero(isnan(datMat[:, i].A))[0],i] = meanVal
return datMat
def show_picture(dataMat, reconMat):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(dataMat[:, 0].flatten().A[0], dataMat[:, 1].flatten().A[0], marker=’^’, s=90)
ax.scatter(reconMat[:, 0].flatten().A[0], reconMat[:, 1].flatten().A[0], marker=’o’, s=50, c=’red’)
plt.show()
def analyse_data(dataMat):
meanVals = mean(dataMat, axis=0)
meanRemoved = dataMat-meanVals
covMat = cov(meanRemoved, rowvar=0)
eigvals, eigVects = linalg.eig(mat(covMat))
eigValInd = argsort(eigvals)
topNfeat = 20
eigValInd = eigValInd[:-(topNfeat+1):-1]
cov_all_score = float(sum(eigvals))
sum_cov_score = 0
for i in range(0, len(eigValInd)):
line_cov_score = float(eigvals[eigValInd[i]])
sum_cov_score += line_cov_score
'''
我们发现其中有超过20%的特征值都是0。
这就意味着这些特征都是其他特征的副本,也就是说,它们可以通过其他特征来表示,而本身并没有提供额外的信息。
最前面15个值的数量级大于10^5,实际上那以后的值都变得非常小。
这就相当于告诉我们只有部分重要特征,重要特征的数目也很快就会下降。
最后,我们可能会注意到有一些小的负值,他们主要源自数值误差应该四舍五入成0.
'''
print '主成分:%s, 方差占比:%s%%, 累积方差占比:%s%%' % (format(i+1, '2.0f'), format(line_cov_score/cov_all_score*100, '4.2f'), format(sum_cov_score/cov_all_score*100, '4.1f'))
if name == “main“:
# # 加载数据,并转化数据类型为float
# dataMat = loadDataSet(‘input/13.PCA/testSet.txt’)
# # 只需要1个特征向量
# lowDmat, reconMat = pca(dataMat, 1)
# # 只需要2个特征向量,和原始数据一致,没任何变化
# # lowDmat, reconMat = pca(dataMat, 2)
# # print shape(lowDmat)
# show_picture(dataMat, reconMat)
# 利用PCA对半导体制造数据降维
dataMat = replaceNanWithMean()
print shape(dataMat)
# 分析数据
analyse_data(dataMat)
# lowDmat, reconMat = pca(dataMat, 20)
# print shape(lowDmat)
# show_picture(dataMat, reconMat)