Python---pandas包

来源:http://www.th7.cn/Program/Python/201412/329841.shtml


pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包

类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:

from pandas import Series,DataFrame
import pandas as pd

 

Series


Series 可以看做一个定长的有序字典。基本任意的一维数据都可以用来构造 Series 对象:

>>> s = Series([1,2,3.0,'abc'])
>>> s
0      1
1      2
2      3
3    abc
dtype: object

虽然 dtype:object 可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。

Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:

>>> s = Series(data=[1,3,5,7],index = ['a','b','x','y'])
>>> s
a    1
b    3
x    5
y    7
dtype: int64
>>> s.index
Index(['a', 'b', 'x', 'y'], dtype='object')
>>> s.values
array([1, 3, 5, 7], dtype=int64)

Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。

注意 Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。

Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。

另外,Series 对象和它的 index 都含有一个 name 属性:

>>> s.name = 'a_series'
>>> s.index.name = 'the_index'
>>> s
the_index
a            1
b            3
x            5
y            7
Name: a_series, dtype: int64

 

DataFrame


DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。

DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:

>>> data = {'state':['Ohino','Ohino','Ohino','Nevada','Nevada'],
        'year':[2000,2001,2002,2001,2002],
        'pop':[1.5,1.7,3.6,2.4,2.9]}
>>> df = DataFrame(data)
>>> df
   pop   state  year
0  1.5   Ohino  2000
1  1.7   Ohino  2001
2  3.6   Ohino  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

[5 rows x 3 columns]

虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 “01234”。

完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None),columns 即 “name”:

>>> df = DataFrame(data,index=['one','two','three','four','five'],
               columns=['year','state','pop','debt'])
>>> df
       year   state  pop debt
one    2000   Ohino  1.5  NaN
two    2001   Ohino  1.7  NaN
three  2002   Ohino  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN

[5 rows x 4 columns]

同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:

>>> df.index
Index(['one', 'two', 'three', 'four', 'five'], dtype='object')
>>> df.columns
Index(['year', 'state', 'pop', 'debt'], dtype='object')
>>> type(df['debt'])

DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。

对象属性


重新索引

Series 对象的重新索引通过其 .reindex(index=None,**kwargs) 方法实现。**kwargs 中常用的参数有俩:method=None,fill_value=np.NaN

ser = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c'])
>>> a = ['a','b','c','d','e']
>>> ser.reindex(a)
a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64
>>> ser.reindex(a,fill_value=0)
a   -5.3
b    7.2
c    3.6
d    4.5
e    0.0
dtype: float64
>>> ser.reindex(a,method='ffill')
a   -5.3
b    7.2
c    3.6
d    4.5
e    4.5
dtype: float64
>>> ser.reindex(a,fill_value=0,method='ffill')
a   -5.3
b    7.2
c    3.6
d    4.5
e    4.5
dtype: float64


In [1]: from pandas import Series
   ...: ser3 = Series(['USA','Mexico','Canada'],index = [0,5,10])
   ...: ranger = range(15)
   ...: ser3.reindex(ranger,method = 'ffill')
   ...: 
Out[1]: 
0        USA
1        USA
2        USA
3        USA
4        USA
5     Mexico
6     Mexico
7     Mexico
8     Mexico
9     Mexico
10    Canada
11    Canada
12    Canada
13    Canada
14    Canada
dtype: object


.reindex() 方法会返回一个新对象,其 index 严格遵循给出的参数,method:{'backfill', 'bfill', 'pad', 'ffill', None} 参数用于指定插值(填充)方式,当没有给出时,自动用fill_value 填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)

DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,**kwargs)。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法method 参数只能应用于,即轴 0。

>>> state = ['Texas','Utha','California']
>>> df.reindex(columns=state,method='ffill')
    Texas  Utha  California
a      1   NaN           2
c      4   NaN           5  
d      7   NaN           8

[3 rows x 3 columns]
>>> df.reindex(index=['a','b','c','d'],columns=state,method='ffill')
   Texas  Utha  California
a      1   NaN           2
b      1   NaN           2
c      4   NaN           5
d      7   NaN           8

[4 rows x 3 columns]

不过 fill_value 依然对有效。聪明的小伙伴可能已经想到了,可不可以通过df.T.reindex(index,method='**').T 这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用 reindex(index,method='**') 的时候,index 必须是单调的,否则就会引发一个ValueError: Must be monotonic for forward fill,比如上例中的最后一次调用,如果使用index=['a','b','d','c'] 的话就不行。

删除指定轴上的项

即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的 .drop(labels, axis=0) 方法:

>>> ser
d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64
>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> ser.drop('c')
d    4.5
b    7.2
a   -5.3
dtype: float64
>>> df.drop('a')
   Ohio  Texas  California
c     3      4           5
d     6      7           8

[2 rows x 3 columns]
>>> df.drop(['Ohio','Texas'],axis=1)
   California
a           2
c           5
d           8

[3 rows x 1 columns]

.drop() 返回的是一个新对象,元对象不会被改变。

索引和切片

就像 Numpy,pandas 也支持通过 obj[::] 的方式进行索引和切片,以及通过布尔型数组进行过滤。

不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。

>>> foo
a    4.5
b    7.2
c   -5.3
d    3.6
dtype: float64
>>> bar
0    4.5
1    7.2
2   -5.3
3    3.6
dtype: float64
>>> foo[:2]
a    4.5
b    7.2
dtype: float64
>>> bar[:2]
0    4.5
1    7.2
dtype: float64
>>> foo[:'c']
a    4.5
b    7.2
c   -5.3
dtype: float64

这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'c' 这样的字符串索引时,结果就包含了这个边界元素。

另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。

可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:

>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.ix[:2,:2]
   Ohio  Texas
a     0      1
c     3      4

[2 rows x 2 columns]
>>> df.ix['a','Ohio']
0

而不使用 ix ,直接切的情况就特殊了:

  • 索引时,选取的是列
  • 切片时,选取的是行

这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。

>>> df['Ohio']
a    0
c    3
d    6
Name: Ohio, dtype: int32
>>> df[:'c']
   Ohio  Texas  California
a     0      1           2
c     3      4           5

[2 rows x 3 columns]
>>> df[:2]
   Ohio  Texas  California
a     0      1           2
c     3      4           5

[2 rows x 3 columns]

使用布尔型数组的情况,注意行与列的不同切法(列切法的 : 不能省):

>>> df['Texas']>=4
a    False
c     True
d     True
Name: Texas, dtype: bool
>>> df[df['Texas']>=4]
   Ohio  Texas  California
c     3      4           5
d     6      7           8

[2 rows x 3 columns]
>>> df.ix[:,df.ix['c']>=4]
   Texas  California
a      1           2
c      4           5
d      7           8

[3 rows x 2 columns]

[python]  view plain  copy
 print ?
  1. import numpy as np  
  2. import pandas as pd  
  3. df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc'))  
df 是这样子滴

那么这三种选取数据的方式该怎么选择呢?

一、当每列已有column name时,用 df [ 'a' ] 就能选取出一整列数据。如果你知道column names 和index,且两者都很好输入,可以选择 .loc

[python]  view plain  copy
 print ?
  1. df.loc[0'a']  
  2. df.loc[0:3, ['a''b']]  
  3. df.loc[[15], ['b''c']]  
由于这边我们没有命名index,所以是DataFrame自动赋予的,为数字0-9

二、如果我们嫌column name太长了,输入不方便,有或者index是一列时间序列,更不好输入,那就可以选择 .iloc了。这边的 i 我觉得代表index,比较好记点。

[python]  view plain  copy
 print ?
  1. df.iloc[1,1]  
  2. df.iloc[0:3, [0,1]]  
  3. df.iloc[[035], 0:2]  
iloc 使得我们可以对column使用slice(切片)的方法对数据进行选取。

算术运算和数据对齐

pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。

>>> foo = Series({'a':1,'b':2})
>>> foo
a    1
b    2
dtype: int64
>>> bar = Series({'b':3,'d':4})
>>> bar
b    3
d    4
dtype: int64
>>> foo + bar
a   NaN
b     5
d   NaN
dtype: float64

DataFrame 的对齐操作会同时发生在行和列上。

当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value 参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)。其他算术方法还有:sub(), div(), mul()

Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。

函数应用和映射

Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。

当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds) 方法。

f = lambda x:x.max()-x.min()
>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.apply(f)
Ohio          6
Texas         6
California    6
dtype: int64
>>> df.apply(f,axis=1)
a    2
c    2
d    2
dtype: int64

 

排序和排名

Series 的 sort_index(ascending=True) 方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。

若要按值对 Series 进行排序,当使用 .order() 方法,任何缺失值默认都会被放到 Series 的末尾。

在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True) 方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)进行排序(不能对行使用 by 参数):

>>> df.sort_index(by='Ohio')
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.sort_index(by=['California','Texas'])
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.sort_index(axis=1)
   California  Ohio  Texas
a           2     0      1
c           5     3      4
d           8     6      7

[3 rows x 3 columns]

排名(Series.rank(method='average', ascending=True))的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的method 参数就是起这个作用的,他有四个值可选:average, min, max, first

>>> ser=Series([3,2,0,3],index=list('abcd'))
>>> ser
a    3
b    2
c    0
d    3
dtype: int64
>>> ser.rank()
a    3.5
b    2.0
c    1.0
d    3.5
dtype: float64
>>> ser.rank(method='min')
a    3
b    2
c    1
d    3
dtype: float64
>>> ser.rank(method='max')
a    4
b    2
c    1
d    4
dtype: float64
>>> ser.rank(method='first')
a    3
b    2
c    1
d    4
dtype: float64

注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。

DataFrame 的 .rank(axis=0, method='average', ascending=True) 方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。

统计方法

pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。

比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:

>>> df
    one  two
a  1.40  NaN
b  7.10 -4.5
c   NaN  NaN
d  0.75 -1.3

[4 rows x 2 columns]
>>> df.mean()
one    3.083333
two   -2.900000
dtype: float64
>>> df.mean(axis=1)
a    1.400
b    1.300
c      NaN
d   -0.275
dtype: float64
>>> df.mean(axis=1,skipna=False)
a      NaN
b    1.300
c      NaN
d   -0.275
dtype: float64

其他常用的统计方法有:

######################## ******************************************
count 非 NA 值的数量
describe 针对 Series 或 DF 的列计算汇总统计
min , max 最小值和最大值
argmin , argmax 最小值和最大值的索引位置(整数)
idxmin , idxmax 最小值和最大值的索引值
quantile 样本分位数(0 到 1)
sum 求和
mean 均值
median 中位数
mad 根据均值计算平均绝对离差
var 方差
std 标准差
skew 样本值的偏度(三阶矩)
kurt 样本值的峰度(四阶矩)
cumsum 样本值的累计和
cummin , cummax 样本值的累计最大值和累计最小值
cumprod 样本值的累计积
diff 计算一阶差分(对时间序列很有用)
pct_change 计算百分数变化

 

处理缺失数据


pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。

处理 NA 的方法有四种:dropna , fillna , isnull , notnull 。

is(not)null

这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。

dropna

对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。

问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how='any', thresh=None) ,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。

fillna

fillna(value=None, method=None, axis=0) 中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex() 方法相同,这里不再赘述。

inplace 参数


前面有个点一直没讲,结果整篇示例写下来发现还挺重要的。就是 Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False 的可选参数。如果手动设定为 True,那么原数组就可以被替换。

2.4 dataframe类型转换-----------------------------------------------------------------------
df.astype(int)

2.5 dataframe和Series的数据结构构建--------------------------------------------------------------

只规定一维的话,默认将每个维度看作一column,可以在index对另一个维度的索引进行规定(当然如果对column排序有要求,也可以按照column进行重排序reindex操作)
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002],
'pop': [1.5, 1.7, 3.6, NaN, 2.9]}
frame = DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
index=['one', 'two', 'three', 'four', 'five'])
请注意这种创建方法,字典的key值一定是frame的列索引column index


如果是二维字典的话,那么将最外层的规定为columnID,内层的为rowID
data = {'state': {1:'Ohio', 2:'Ohio', 3:'Ohio', 4:'Nevada', 5:'Nevada'},
'year': {1:2000, 2:2001, 3:2002, 4:2001, 5:2002},
'pop': {1:1.5, 2:1.7, 3:3.6, 4:2.4, 5:2.9}}
frame = DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
index=['one', 'two', 'three', 'four', 'five'])
外层字典的键是列索引,内层键是row索引

如果一维都不规定,那么则将data看作np.array对象,而在index和columns函数中对rowID和columns分别进行规定

dataframe和Series的归根的结构特征
pd.Series({'a':2,'b':1,'c':3,'d':54,'e':3})
pd.Series([2,1,3,54,3],index=['a','b','c','d','e'])
dataframe(Series(),index=[],columns=[])

除却值外
dataframe有两个维度
Series只有一个维度




2.6 dataframe索引index------------------------------------------
几种index索引种类
Index
Int64Index
MultiIndex
DatatimeIndex
PeriodIndex

df.columns和df.index 都是一种索引

reindex重索引
df.reindex(['e','d','c','b','a']) #按照这个索引进行重新排序
df.reindex(['e','d','c','b','a'],method='ffill') #没有这个索引的,自动根据前个索引的值进行填充
df.reindex(['e','d','c','b','a'],fill_value=0) #没有这个索引的,自动赋值为0

2.7  dataframe函数操作---------------------------------------------
元组能够操作的函数,在dataframe里一样能够操作
f=lambda x:x.max()-x.min()
df.apply(f)
f=lambda x:'%.2f' %x
df.apply(f)

排序操作-------------------------------------

dataframe可以按照index和columns两种索引对dataframe进行排序
sort_index()按照索引排序
df.sort_index() #按照rowID进行排序,默认升序
df.sore_index(axis=1,ascending=False) #按照columnID进行排序,设定为降序


order()按照值排序
dataframe的按值排序,其实是按照某列,或者联合多列中的大小值给所有的row排序
也就是说以某个列的值,代表各个row之间的值进行排序
df.order(by=['a'])
df.order(by=['a','b'])

rank排序
df.rank() 默认在各个column里面进行排序
df.rank(axis=1)默认在各个row里面进行排序

汇总操作-------------------------------------
df
    one  two
a   1.4  NaN
b   7.1  -4.5
c   NaN  NaN
d   0.74 -1.3
df.sum()按照列进行加和,计算各个column的和
df.sum(axis=1) #跟matlab和Octave一样
df.mean() #和sum一样原理
df.idxmax() 会返回各个列索引内最大的值  
output:  one  b
         two  d
df.idxmin() 会返回各个列索引内最小的值
output:  a  
         two  d


相关系数操作-------------------------------------
两个series协方差
s1.corr(s2)相关系数
s1.cov(s2)协方差

dataframe的协方差和相关系数,计算的就是两个或多个column之间的相关参数
df.corr()协方差
df.cov()相关系数
df.corr(df['a'])计算所有列和某个列的相关系数


唯一性操作-------------------------------------
s1.unique()
pd.value_count(s1,sort=False) #进行map-reduce运算
df.apply(pd.value_counts,fillna(0)) #也是对各个列进行操作,然后没有出现的key的次数赋值为0



2.8  dataframe和series的对齐操作align-----------------------------------------------


dataframe之间加和对齐
是二维的操作,在row和col上都有对齐操作,没有重叠的项都为NaN

series之间的加和对齐
是一维的操作,对于菲重叠的index项,也赋值为NaN

dataframe和series的加和操作
s=pd.DataFrame(np.arange(9).reshape(3,3),index=['New York','beijing', 'Tian Jin'],columns=['b','d','e'] )
series2=pd.Series(range(3),index=['b','e','f'])
因为dataframe是二维的,而Series是一维的对象,那么二维和一维操作如何运算呢?
我们默认将Series看作一个row行对象,然后dataframe有多少个行,那么我们就复制多少个值为Series的row对象,然后跟dataframe进行相减运算。
没有重叠的列column的时候,就按NaN处置。

3 清理数据-------------------------------------------------------------------
df[df.isnull()]
df[df.notnull()]
df.dropna()将所有含有nan项的row删除
df.dropna(axis=1,thresh=3) 将在列的方向上三个为NaN的项删除
df.dropna(how='ALL')将全部项都是nan的row删除
填充值
df.fillna(0)
df.fillna({1:0,2:0.5}) 对第一列nan值赋0,第二列赋值0.5
df.fillna(method='ffill') 在列方向上以前一个值作为值赋给NaN


4 一些定式发现-------------------------------------------------------------------------------------------
默认是以column为单位进行操作
比如pd.dataframe(data)   pd.dataframe(dict)
比如df.rank()
比如pd.sort_index()
比如df.sum()
都需要设定axis=1或者指定index才能够进行亚row级别的操作
也就是说我们认知的时候,先认知的是column字段,然后是各个row

两级访问元素
s['a',2]
s[:,2]
df=s.unstack()
s=df.stack()


来源:https://sanwen8.cn/p/2241oUa.html


shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示:

index value1
A 0
B 1
C 2
D 3

那么如果执行以下代码:

df.shift()

就会变成如下:

index value1
A NaN
B 0
C 1
D 2

看一下函数原型:

DataFrame.shift(periods=1, freq=None, axis=0)

参数

  • periods:类型为int,表示移动的幅度,可以是正数,也可以是负数,默认值是1,1就表示移动一次,注意这里移动的都是数据,而索引是不移动的,移动之后没有对应值的,就赋值为NaN。
    执行以下代码:
df.shift(2)

就会得到:

index value1
A NaN
B NaN
C 0
D 1

执行:

df.shift(-1)

会得到:

index value1
A 1
B 2
C 3
D NaN
  • freq: DateOffset, timedelta, or time rule string,可选参数,默认值为None,只适用于时间序列,如果这个参数存在,那么会按照参数值移动时间索引,而数据值没有发生变化。例如现在有df1如下:
index value1
2016-06-01 0
2016-06-02 1
2016-06-03 2
2016-06-04 3

执行:

df1.shift(periods=1,freq=datetime.timedelta(1))

会得到:


index | value1
—-|—-
2016-06-02 | 0
2016-06-03 | 1
2016-06-04 | 2
2016-06-05 | 3

  • axis:{0, 1, ‘index’, ‘columns’},表示移动的方向,如果是0或者’index’表示上下移动,如果是1或者’columns’,则会左右移动。

http://www.cnblogs.com/big-face/p/5418416.html


1 import pandas as pd, numpy as np
2 dates = pd.date_range('20130101', periods=6)
3 df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

1 mutate + ifelse
1 df['E'] = np.where(df['D'] >= 0, '>=0', '<0')
2 df['F'] = np.random.randint(0, 2, 6)
3 df.assign(G = df.A * df.D) # 或者
4 df['F'] = df['F'].apply(str) #针对单列的
5 df.applymap(str) #这个相当于是mutate_each

2 table

1 pd.value_counts(df["E"])
2 pd.pivot_table(df,index=['E','F'])

3 index 也就是取df的rownames,但与R不一样的在于,df可能有多维rownames

1 df.index
2 df.set_index(['A'], drop = 0, append = 1) # 把已有的列设置为index,可保留之前的index,也可以把新的index在原数据中删除
3 df['dates'] = df.index # 新生成一列dates
4 df.reset_index(level=0, inplace=True) # 同上
5 df.reset_index(level=['index']) # 同上


4 删除列和行
1 df = df.drop('index', axis = 1) # 可以删除多列
2 df.drop(df.index[[1,3]])


5 column names

1 df.columns
2 df.columns = ['a', 'b', 'c', 'e', 'd', 'f'] # 重命名
3 df.rename(columns = {'A':'aa','B':'bb', 'C':'cc', 'D':'dd', 'E':'ee', 'F':'ff'}, inplace=True)
4 df.rename(columns=lambda x: x[1:].upper(), inplace=True) # 也可以用函数 inplace参数的意思就是代替原来的变量,深拷贝

6 哑变量 dummy variables

1 pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies()


7 纯粹的df的矩阵,即不包含column和index
1 df.values
2 df.get_values()


8 summary

1 df.describe() # 只会针对数值型变量做计算

9 rbind
1 df2=pd.DataFrame([[5,6],[7,8]],columns=list('AB'))
2 df.append(df2, ignore_index=True)

10 group by 分组汇总计算,和pivot_table类似

1 df.groupby(['E','F']).mean()
2 df.groupby(['E','F']).agg(['sum', 'mean'])
3 pd.pivot_table(df,index=['E','F'], aggfunc=[np.sum, np.mean])
4 df.pivot_table(index=['E','F'], aggfunc=[np.sum, np.mean]) # 同上
5 df.groupby(['E','F']).agg({'A':['mean','sum'], 'B':'min'}) # groupby 也可以这样写


11 排序
1 df.sort(['A','B'],ascending=[1,0]) # 按列排序,na_position控制NAN的位置
2 df.sort_index(ascending=0) # 按index排序

12 筛选

1 df[(df.A >= -1) & (df.B <= 0)] # 值筛选
2 df[df.E.str.contains(">")] # 包含某个字符,contains筛选的其实是正则表达式
3 df[df.F.isin(['1'])] # 在列表内

13 变量选择

1 df['A'] # 单个的列
2 df[0:3] #
3 df['20130102':'20130104'] # 按index筛选
4 df.loc[:,] # 类似于R里面的dataframe选行和列的方法
5 df.iloc[:,] # iloc只能用数字了








你可能感兴趣的:(技术层-python)