- 机器学习之路:FaceBook预测案例分析----->KNN算法的应用与调优
是一个Bug
机器学习算法人工智能
小白的机器学习之路(二)引子学习机器学习基础:从理论到实践了解机器学习机器学习的定义机器学习的分类机器学习的基本原理掌握数据预处理数据清洗特征选择特征工程分类算法sklearn转换器和预估器KNN算法获取数据数据集划分特征工程—标准化KNN算法引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理),目标一:学习机器学习基础:了解机器学习的定义、分类和基本原理。掌握数据预处理:学习数据清洗
- 案例为师实战为王-开启Python机器学习之路视频教程+课件
globals_11de
─章节01:Python基础与科学计算库numpy│课时1:Python基础2910.mp4│课时2:Python核心结构5750.mp4│课时3:Numpy数组3518.mp4│├─章节02:数据分析处理Pandas库│课时4:Numpy常用函数3344.mp4│课时5:Pandas数据处理方法5926.mp4│课时6:Pandas核心操作2542.mp4│├─章节03:回归算法│课时7:机器学
- 仅需10分钟:开启你的机器学习之路
Datawhale
选自freecodecamp作者:TirmidziFaizalAflahi机器之心编译机器学习之路虽漫漫无垠,但莘莘学子依然纷纷投入到机器学习的洪流中。如何更有效地开始机器学习呢?所谓「八仙过海,各显神通」,本文作者以Python语言为工具进行机器学习,并以Kaggle竞赛中的泰坦尼克号项目进行详细解读。跟着小编来看看吧!随着行业内机器学习的崛起,能够帮用户快速迭代整个过程的工具变得至关重要。Py
- 机器学习之路:基于pytorch实现完成的模型训练套路
是一个Bug
机器学习pytorch人工智能
小白的机器学习之路(五)引子假设model是你的PyTorch模型创建一个与模型结构一致的新实例加载保存的模型参数假设model是你的PyTorch模型简单的线性回归模型的算法实现,可视化引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理)目标五:学习深度学习框架:学习使用PyTorch或TensorFlow等深度学习框架。目标任务:使用深度学习框架搭建一个更复杂的神经网络,并在一个数
- 机器学习之路
编程小兔崽
原创:编程TWO编程小兔崽今天机器学习方法一检索能力最近有朋友问我是如何学习机器学习的,说最近机器学习、人工智能这些特别火,以后想走机器学习。有这个想法是特别好的,但是跟大家说,如果是因为机器学习工资高,最近特别火而想走机器学习,基本上是凉凉的、没戏。今天我把我这几个项目的演示过程分享给大家,让大家了解了解工智能,有一个大概的,什么是人工智能。我不建议大家刚刚学编程就去看机器学习的视频资料,有能力
- 小白的机器学习之路(四)神经网络的初步认识:基于pytorch搭建自己的神经网络
是一个Bug
机器学习机器学习神经网络pytorch
小白的机器学习之路(四)引子神经网络的基本结构反向传播算法和激活函数优化器如何通过pytorch搭建自己的BPnetwork引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理),考虑到上次研究深度学习算法还是两年前,我薄弱的基础已经无法支持当前的工作,通过前期的学习准备(其它算法工程师和chatgpt的帮助),制定了五天的初步复习计划----初步定为:目标四:学习深度学习基础:了解神经
- python svr回归_机器学习入门之机器学习之路:python支持向量机回归SVR 预测波士顿地区房价...
weixin_39755712
pythonsvr回归
本文主要向大家介绍了机器学习入门之机器学习之路:python支持向量机回归SVR预测波士顿地区房价,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。支持向量机的两种核函数模型进行预测git:https://github.com/linyi0604/MachineLearningfromsklearn.datasetsimportload_bostonfromsklearn.cross
- 如何开始机器学习
SakuraForever
机器学习
在开始机器学习之路前,我们首先谈谈何为技术。不是学了python就是走上了机器学习,不是学了Tensorfolw,caffe2就是开发者。互联网上的追捧,培训班的速成承诺,掀起了一股莫名的风气,仿佛一夜之间,大家都能在短时间内,按照一门教程,顺利走上一条康庄大道。如果你也是这么想。那么还是出门右拐去百度云盘搜索“XXX速成班”吧,享受群体的狂欢。如果你愿意继续看下去,那么我要说,技术,必然是枯燥的
- 【机器学习之路】开山篇 | 机器学习介绍及其类别和概念阐述
计算机魔术师
机器学习逻辑回归算法python人工智能
♂️个人主页:@计算机魔术师作者简介:CSDN内容合伙人,全栈领域优质创作者。机器学习之路系列(一)作者:计算机魔术师版本:1.0(2022.2.25)注释:文章会不定时更新补充文章目录前言一、机器学习概览1.1有监督学习和无监督学习1.1.1监督学习1.1.2无监督学习1.1.3半监督学习1.1.4强化学习1.2批量学习和在线学习1.2.1在线学习1.2.2增量学习1.2.3核外学习1.2.
- 祭天
xian_yu
仅以此文开启我的小白机器学习之路对于想入门的同学来说,最有名的莫过于TensorFLow了,下面就所以说一下我如何配置1,python与anacoda,然后添加环境变量,注意anacoda添加的是\yourpath\Scripts2,cuda,确认你的显卡在Nvidia的支持CUDA加速的显卡列表中。https://developer.nvidia.com/cuda-gpushttps://dev
- 2021版 | 机器学习入门指南
人工智能与算法学习
算法编程语言python机器学习人工智能
这是为朋友社群准备的一篇机器学习入门指南,分享了我机器学习之路看过的一些书、教程、视频,还有学习经验和建议,希望能对大家的学习有所帮助。pdf版思维导图,后台回复:指南Python——书之前跟出版社合作,书柜里积攒了很多Python相关的书,这里推荐三本最有价值的吧:《流畅的Python》,很厚,比较全面,可以作为工具书常常翻看。《Python编程从入门到实践(第2版)》非常全面,对新手还算友好,
- python机器学习手写字体识别,机器学习之路: python 支持向量机 LinearSVC 手写字体识别...
诗遥一妈
使用python3学习sklearn中支持向量机api的使用可以来到我的git下载源代码:https://github.com/linyi0604/MachineLearning#导入手写字体加载器fromsklearn.datasetsimportload_digitsfromsklearn.cross_validationimporttrain_test_splitfromsklearn.pr
- l2正则化python_机器学习入门之机器学习之路: python线性回归 过拟合 L1与L2正则化...
weixin_39831705
l2正则化python
本文主要向大家介绍了机器学习入门之机器学习之路:python线性回归过拟合L1与L2正则化,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。正则化:提高模型在未知数据上的泛化能力避免参数过拟合正则化常用的方法:在目标函数上增加对参数的惩罚项削减某一参数对结果的影响力度L1正则化:lasso在线性回归的目标函数后面加上L1范数向量惩罚项。f=w*x^n+b+k*||w||1x为输入的样
- 从0开始学习深度强化学习之深度学习和深度强化学习的区别之浅显理解
脉动人生
DRL采坑之路游戏神经网络算法强化学习深度学习
引文机器学习之路路阻且长,在我从本科到研究生期间也见过很多机器学习的算法,像很多都是CNN,ANN什么什么NN啥的。在刚开始入门深度强化学习的时候,我也觉得深度强化学习(DeepReinforcementLearing)是一个很高级的东西,在网上查到谷歌的Deepmind搞出来的Alphago就是利用深度强化学习算法搞出来的。但是对于刚开始入门深度强化学习之前无任何机器学习经验的同学来说,可能就略
- python识别虚假新闻的分类器_机器学习之路: python 朴素贝叶斯分类器 MultinomialNB 预测新闻类别...
weixin_39807541
1fromsklearn.datasetsimportfetch_20newsgroups2fromsklearn.cross_validationimporttrain_test_split3#导入文本特征向量转化模块4fromsklearn.feature_extraction.textimportCountVectorizer5#导入朴素贝叶斯模型6fromsklearn.naive_bay
- python主成分分析法降维_机器学习之路:python 特征降维 主成分分析 PCA
梨漾
python主成分分析法降维
1fromsklearn.svmimportLinearSVC2fromsklearn.metricsimportclassification_report3fromsklearn.decompositionimportPCA4importpandasaspd5importnumpyasnp6‘‘‘7主成分分析:8特征降低维度的方法。9提取主要特征成分,有关联的特征进行运算组合10丢弃不显著的特征
- sklearn的机器学习之路:逻辑回归
Augus_Xu
机器学习线性模型逻辑回归机器学习
1.基础概念sigmoid函数:处理二分类问题时,我们最后需要输出分类结果[0,1],而回归得到的是一个(−∞,+∞)(−∞,+∞)的数,因此我们需要使用sigmoid函数。函数定义:其图像为:通过输入的x而转变成(0,1)的数,此处x应该为预测的值,即c0x0+c1x1+...+cnxnc0x0+c1x1+...+cnxn,因此上式可转变为f(x)=11+e−(c0x0+c1x1+...+cnx
- 我的机器学习之路
来自文家市的那个小孩
规划机器学习
重拾丢弃四年的课本,毅然考取交大研究生,回来继续深造,也算一个机遇,因为15年的时候大数据开始成为风口。来到交大,也可谓一波三折,最开始误打误撞进入无线网实验室,偏离了初衷,好在有换导师的机会,挑出这个坑,进入自然语言处理实验室,它是人工智能上的明珠,跌跌撞撞,在里面软磨硬泡半年有余,却始终不是滋味,于是再次鼓起勇气,跳出原来的圈子,进入机器学习的研究领域。研究生阶段虽然快要结束,但真正我在这一领
- python 多项式拟合 多特征值_机器学习之路:python 多项式特征生成PolynomialFeatures 欠拟合与过拟合...
weixin_40008870
python多项式拟合多特征值
分享一下线性回归中欠拟合和过拟合是怎么回事~为了解决欠拟合的情经常要提高线性的次数建立模型拟合曲线,次数过高会导致过拟合,次数不够会欠拟合。再建立高次函数时候,要利用多项式特征生成器生成训练数据。下面把整个流程展示一下模拟了一个预测蛋糕价格的从欠拟合到过拟合的过程git:https://github.com/linyi0604/MachineLearning在做线性回归预测时候,为了提高模型的泛化
- 程序员如何开启机器学习之路?我也遇到过这个问题
weixin_34409357
大数据嵌入式数据结构与算法
我曾是一名想进入AI行业的软件开发者。为了更快熟悉这里边的门道,我阅读了机器学习的书籍,浏览了不少帖子,还学习了Coursera上关于机器学习的课程。但是,但是,依然不知道如何开始…...你是否也有这样的经历呢?图片版权归PeterAlfredHess所有很多开发者都问我:我该如何开始学习机器学习?记不清有多少人问过这个问题了。鉴于此,我专门写了一篇文章来解答大家的疑惑。通过本文,你会知道:为什么
- pytorch 训练过程可视化
qq_40127191
pytorchpytorch深度学习人工智能
使用pythonTqdm进度条库让你的python进度可视化-pytorch中文网211024-Pytorch模型训练中显示进度条_专注机器学习之路-CSDN博客_pytorch训练进度条从keras转到pytorch,没有进度显示,很难受。使用tqdm可以解决。ps:同时碰到速度慢的问题,减少io操作即可。
- 2015.2.8--记录我的机器学习之路--现代启发式算法之蚁群算法
懒懒的兔斯基
算法蚁群算法启发式搜索机器学习machinelearning
蚁群算法对于经典的模型算法,已有太多前人为我们写下各种攻略,我就先整理下我在学习过程中查阅的并觉得讲解得不错的文章吧,之后再慢慢补充我自己反思之后的体会~---------------------------------------------------------------------------------------------------------------------------
- 2015.2.7--记录我的机器学习之路--现代启发式算法之遗传算法
懒懒的兔斯基
记录我的机器学习之路machinelearning启发式搜索机器学习算法遗传算法
遗传算法对于经典的模型算法,已有太多前人为我们写下各种攻略,我就先整理下我在学习过程中查阅的并觉得讲解得不错的文章吧,之后再慢慢补充我自己反思之后的体会~---------------------------------------------------------------------------------------------------------------------------
- 【机器学习之路】(转载)
YYIverson
【数据分析】机器学习与统计学机器学习人工智能广告
作者主页:https://www.nowcoder.com/profile/210306401/myDiscussPost【我的机器学习入门之路(上)——传统机器学习】这篇博客主要记录了我自己的学习路线及相应的资料汇总。总时间跨度约为6个月,主要是利用了晚上的时间和周末的时间,每天坚持下来,日积月累,回过头来,可能会惊讶于自己的进步。对于一个机器学习的小白来说,往往不知道如何入门机器学习,毕竟机器
- <阿瑶机器学习之路>使用SNN对DEAP数据集进行情绪四分类
七七鸭灬
SNN阿瑶机器学习之路分类人工智能
目录SNN基础知识讲解DEAP数据集介绍使用SNN搭建一维Resnet网络进行情绪分类尾言SNN基础知识讲解SpikingNeuralNetwork(脉冲神经网络,SNN)简介第一代神经网络(感知器),第二代神经网络(ANN)它们都是基于神经脉冲的发放频率进行编码,但是神经元的脉冲发放频率并不能完全捕获脉冲序列种包含的信息,因此第三代神经网络(SNN)登场了。第三代神经网络具有更强的生物可解释性的
- 机器学习之路——KNN+交叉验证
qq_39623031
机器学习算法人工智能
KNN分类模型概念:简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类(k-NearestNeighbor,KNN)k值的作用欧几里得距离(EuclideanDistance)如何进行电影分类众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问题。没有哪个电影人会说自己制
- 机器学习之路--机器学习算法一览,应用建议与解决思路
abzs30820
人工智能python大数据
作者:寒小阳时间:2016年1月。出处:http://www.lai18.com/content/2440126.html声明:版权所有,转载请联系作者并注明出处1.引言提起笔来写这篇博客,突然有点愧疚和尴尬。愧疚的是,工作杂事多,加之懒癌严重,导致这个系列一直没有更新,向关注该系列的同学们道个歉。尴尬的是,按理说,机器学习介绍与算法一览应该放在最前面写,详细的应用建议应该在讲完机器学习常用算法之
- 我的机器学习之路 第一关
大梦想家林先生
机器学习之路(之半途而废)机器学习监督学习无监督学习
一、初始机器学习1.什么是机器学习?使计算机像人一样,能够通过观察学习获得经验。2.机器学习的分类:监督学习、无监督学习、强化学习以及推荐系统。3.监督学习(1)定义:给定计算机一定的规则参照,让其对数据进行分析,预测其输出,做出好的决策;(2)分类:回归问题(预测连续值输出)分类问题(预测离散值输出)理解:回归问题和分类问题的区别在于对预测结果类型的不同。例如房价的预测就是连续性的,就属于回归问
- 机器学习之路15
天天学习学习
机器学习聚类算法
无监督学习没有目标值--->无监督学习。无监督学习的算法包括,PCA(降维)和K-Means聚类算法。K-Means聚类算法:算法的原理。聚类效果图算法的步骤:APIK—means算法的模型评估模型评估的API代码:
- 机器学习之路14
天天学习学习
机器学习逻辑回归人工智能
逻辑回归逻辑回归应用于二分类问题,例如:逻辑回归的原理输入逻辑回归的输入就是一个线性回归的结果激活函数sigmoid函数:回归的结果输入到sigmoid函数当中输出的结果是一个在[0,1]当中的概率值,阈值默认为0.5(即大于0.5为是,小于0.5为否)损失机器优化在逻辑回归中,称之为对数拟然损失,公式如下:那么我们如何理解这个式子呢?可以看到,当hg(x)==1时,损失函数的值为0,当hg(x)
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen