Pytorch 实现多层网络

Pytorch 实现多层网络

参考学习花书多层感知机的简洁实现

import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
# 1 定义模型
num_inputs, num_outputs, num_hiddens = 784, 10, 256 #输入个数为784(Fashion-MNIST数据集中图像),输出个数为10,隐藏单元个数为256。
    
net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens),
        nn.ReLU(),
        nn.Linear(num_hiddens, num_outputs), 
        )
    
for params in net.parameters():
    init.normal_(params, mean=0, std=0.01)

# 2 读取数据并训练模型
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) #使用Fashion-MNIST数据集
loss = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)

num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
  • output:
epoch 1, loss 0.0020, train acc 0.850, test acc 0.935
epoch 2, loss 0.0008, train acc 0.942, test acc 0.943
epoch 3, loss 0.0006, train acc 0.958, test acc 0.961
epoch 4, loss 0.0004, train acc 0.967, test acc 0.969
epoch 5, loss 0.0004, train acc 0.974, test acc 0.968

你可能感兴趣的:(Pytorch)