线性判别分析LDA
鸢尾花数据集
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_classification
class LDA():
def Train(self, X, y):
X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])
X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])
mju1 = np.mean(X1, axis=0)
mju2 = np.mean(X2, axis=0)
cov1 = np.dot((X1 - mju1).T, (X1 - mju1))
cov2 = np.dot((X2 - mju2).T, (X2 - mju2))
Sw = cov1 + cov2
w = np.dot(np.mat(Sw).I, (mju1 - mju2).reshape((len(mju1), 1)))
self.mju1 = mju1
self.cov1 = cov1
self.mju2 = mju2
self.cov2 = cov2
self.Sw = Sw
self.w = w
def Test(self, X, y):
"""X为测试数据集,y为测试label"""
y_new = np.dot((X), self.w)
nums = len(y)
c1 = np.dot((self.mju1 - self.mju2).reshape(1, (len(self.mju1))), np.mat(self.Sw).I)
c2 = np.dot(c1, (self.mju1 + self.mju2).reshape((len(self.mju1), 1)))
c = 1/2 * c2
h = y_new - c
y_hat = []
for i in range(nums):
if h[i] >= 0:
y_hat.append(0)
else:
y_hat.append(1)
count = 0
for i in range(nums):
if y_hat[i] == y[i]:
count += 1
precise = count / nums
print("测试样本数量:", nums)
print("预测正确样本的数量:", count)
print("测试准确度:", precise)
return precise
if '__main__' == __name__:
n_samples = 500
X, y = make_classification(n_samples=n_samples, n_features=2, n_redundant=0, n_classes=2,n_informative=1, n_clusters_per_class=1, class_sep=0.5, random_state=10)
lda = LDA()
Xtrain = X[:299, :]
Ytrain = y[:299]
Xtest = X[300:, :]
Ytest = y[300:]
lda.Train(Xtrain, Ytrain)
precise = lda.Test(Xtest, Ytest)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.xlabel("x1")
plt.ylabel("x2")
plt.title("Test precise:" + str(precise))
plt.show()

月亮数据集
from sklearn.svm import SVC
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]
y = iris["target"]
setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)
def plot_svc_decision_boundary(svm_clf, xmin, xmax):
w = svm_clf.coef_[0]
b = svm_clf.intercept_[0]
x0 = np.linspace(xmin, xmax, 200)
decision_boundary = -w[0]/w[1] * x0 - b/w[1]
margin = 1/w[1]
gutter_up = decision_boundary + margin
gutter_down = decision_boundary - margin
svs = svm_clf.support_vectors_
plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
plt.plot(x0, decision_boundary, "k-", linewidth=2)
plt.plot(x0, gutter_up, "k--", linewidth=2)
plt.plot(x0, gutter_down, "k--", linewidth=2)
plt.title("大间隔分类", fontsize=16)
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([0, 5.5, 0, 2])
plt.show()

SVM(支持向量机)算法
鸢尾花数据集
from sklearn.svm import SVC
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]
y = iris["target"]
setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)
def plot_svc_decision_boundary(svm_clf, xmin, xmax):
w = svm_clf.coef_[0]
b = svm_clf.intercept_[0]
x0 = np.linspace(xmin, xmax, 200)
decision_boundary = -w[0]/w[1] * x0 - b/w[1]
margin = 1/w[1]
gutter_up = decision_boundary + margin
gutter_down = decision_boundary - margin
svs = svm_clf.support_vectors_
plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
plt.plot(x0, decision_boundary, "k-", linewidth=2)
plt.plot(x0, gutter_up, "k--", linewidth=2)
plt.plot(x0, gutter_down, "k--", linewidth=2)
plt.title("大间隔分类", fontsize=16)
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([0, 5.5, 0, 2])
plt.show()

月亮数据集
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
import numpy as np
import matplotlib as mpl
from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
def plot_dataset(X, y, axes):
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
plt.axis(axes)
plt.grid(True, which='both')
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"$x_2$", fontsize=20, rotation=0)
plt.title("月亮数据",fontsize=20)
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()

k-means聚类分析
鸢尾花数据集
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
lris_df = datasets.load_iris()
x_axis = lris_df.data[:,2]
y_axis = lris_df.data[:,3]
model = KMeans(n_clusters=2)
model.fit(lris_df.data)
prddicted_label= model.predict([[6.3, 3.3, 6, 2.5]])
all_predictions = model.predict(lris_df.data)
plt.xlabel('花瓣的长度')
plt.ylabel('花瓣的宽度')
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.scatter(x_axis, y_axis, c=all_predictions)
plt.show()

月亮数据集
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import numpy as np
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
X1=X[:,0]
X2=X[:,1]
model = KMeans(n_clusters=2)
model.fit(X)
prddicted_label= model.predict([[-0.22452786,1.01733299]])
all_predictions = model.predict(X)
plt.scatter(X1, X2, c=all_predictions)
plt.show()
