Flume的安装与综合使用

Flume + Kafka基本是日志实时采集的标准搭档了。
本篇文章基于Flume-ng-1.6.0-cdh5.7.0 + CentOS6.7 + JDK1.6+

  • 下载,安装JDK

1.解压到 ~/app
2.将java配置系统环境变量中: vi ~/.bash_profile

export JAVA_HOME=/home/hadoop/app/jdk1.8.0_144
export PATH=$JAVA_HOME/bin:$PATH

3.source ~/.bash_profile下让其配置生效,
4.检测是否安装JDK成功:java -version

  • 下载,安装Flume

1.下载,解压到 ~/app
2.将flume配置到系统环境变量中: ~/.bash_profile

export FLUME_HOME=/home/hadoop/app/apache-flume-1.6.0-cdh5.7.0-bin
export PATH=$FLUME_HOME/bin:$PATH

3.source ~/.bash_profile让其配置生效,
4.修改flume-env.sh的配置:

cd  $FLUME_HOME/conf
cp flume-env.sh.template flume-env.sh
vi flume-env.sh
export JAVA_HOME=/home/hadoop/app/jdk1.8.0_144

5.检测: flume-ng version:

Flume 1.6.0-cdh5.7.0
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: 8f5f5143ae30802fe79f9ab96f893e6c54a105d1
Compiled by jenkins on Wed Mar 23 11:38:48 PDT 2016
From source with checksum 50b533f0ffc32db9246405ac4431872e

  • 从指定的网络端口采集数据输出到控制台

A single-node Flume configuration

1.使用Flume的关键就是写配置文件
A) 配置Source
B) 配置Channel
C) 配置Sink
D) 把以上三个组件串起来

a1: agent名称 
r1: source的名称
k1: sink的名称
c1: channel的名称

2.下面是一个简单的配置文件范例,该例子通过netcat产生日志,
持续输出到console中。

  • example.conf配置:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = hadoop
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

1个source可以指定多个channels,而1个sink只能接收来自1个channel的数据。

3.启动agent

flume-ng agent \
--name a1 \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/example.conf \
-Dflume.root.logger=INFO,console

4.另开窗口,使用telnet进行测试: telnet hadoop 44444
5.输入测试文字,在flume-ng agent启动窗口看到telnet窗口输入的文字,以Event形式显示:
Event: { headers:{} body: 68 65 6C 6C 6F 0D hello. }
EventFLume数据传输的基本单元
Event = 可选的header + byte array

  • 监控一个文件实时采集增量数据输出到控制台

1.首先新增exec-memory-logger.conf配置:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command=tail -f /home/feiyue/data/flume-data.log
a1.sources.r1.shell=/bin/sh -c

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

2.启动agent

flume-ng agent \
--name a1 \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-logger.conf \
-Dflume.root.logger=INFO,console

3.新开窗口echo hello >> flume-data.log,在flume-ng agent窗口看到监视的日志文件内容。

  • 监控一个文件实时采集增量数据输出到HDFS

与上面的做法类似,只是配置信息有些变化:

type    –   The component type name, needs to be hdfs
hdfs.path   –   HDFS directory path (eg hdfs://namenode/flume/webdata/)
  • 服务器A(Web APP)上的日志实时采集到服务器B(HDFS)上

1.技术选型:

日志服务器A:exec source + memory channel + avro sink
HDFS服务器B:avro source + memory channel + logger sink

跨节点以 avro文件形式传输较为普遍。

Flume的安装与综合使用_第1张图片
跨节点

2.新增配置文件exec-memory-avro.conf并修改内容

exec-memory-avro.sources = exec-source
exec-memory-avro.sinks = avro-sink
exec-memory-avro.channels = memory-channel

exec-memory-avro.sources.exec-source.type = exec
exec-memory-avro.sources.exec-source.command = tail -F /home/hadoop/data/data.log
exec-memory-avro.sources.exec-source.shell = /bin/sh -c

exec-memory-avro.sinks.avro-sink.type = avro

# send to the configured hostname/port pair
exec-memory-avro.sinks.avro-sink.hostname = 192.168.199.151
exec-memory-avro.sinks.avro-sink.port = 44444

exec-memory-avro.channels.memory-channel.type = memory

exec-memory-avro.sources.exec-source.channels = memory-channel
exec-memory-avro.sinks.avro-sink.channel = memory-channel

3.新增配置文件avro-memory-logger.conf并修改内容

avro-memory-logger.sources = avro-source
avro-memory-logger.sinks = logger-sink
avro-memory-logger.channels = memory-channel

avro-memory-logger.sources.avro-source.type = avro

# Listens on Avro IP and port 
avro-memory-logger.sources.avro-source.bind = 192.168.199.151  
avro-memory-logger.sources.avro-source.port = 44444

avro-memory-logger.sinks.logger-sink.type = logger

avro-memory-logger.channels.memory-channel.type = memory

avro-memory-logger.sources.avro-source.channels = memory-channel
avro-memory-logger.sinks.logger-sink.channel = memory-channel

4.先启动avro-memory-logger,注意顺序

flume-ng agent \
--name avro-memory-logger \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/avro-memory-logger.conf \
-Dflume.root.logger=INFO,console

5.再启动exec-memory-avro,注意顺序

flume-ng agent \
--name exec-memory-avro \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-avro.conf \
-Dflume.root.logger=INFO,console

6.在服务器A上开启一个窗口,人工模拟往日志文件里输入内容

➜  echo ccccc >> flume-data.log
➜  echo 123456789 >> flume-data.log

7.在服务器B的flume-ng agent窗口将会看到Event形式的内容输出,可能略有延迟(内存缓存有关)

参考:

http://archive.cloudera.com/cdh5/cdh/5/flume-ng-1.6.0-cdh5.7.0/FlumeUserGuide.html

你可能感兴趣的:(Flume的安装与综合使用)