在有限的资源下,执行效率高。
常见问题
数据倾斜、Map数设置、Reduce数设置等
explain [extended] hql
样例
explain select no,count(*) from testudf group by no;
explain extended select no,count(*) from testudf group by no;
执行阶段
STAGE DEPENDENC1ES:
Stage-1 is a root stage
Stage-0 is a root stage
Map阶段
Map Operator Tree:
TableScan
alias: testudf
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column stats: NONE
Select Operator
expressions: no (type: string)
outputColumnNames: no
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column stats : NONE
Group By Operator
aggregations: count()
keys: no (type: string)
mode: hash
outputColumnNames: _col0, _col1
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column sta ts: NONE
Reduce Output Operator
key expressions: _col0 (type: string)
sort order: +
Map-reduce partition columns: _col0 (type: string)
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column s tats: NONE
value expressions: _col1 (type: bigint)
reduce阶段
Reduce Operator Tree:
Group By Operator
aggregations: count(VALUE._col0)
keys: KEY._col0 (type: string)
mode: mergepartial
outputColumnNames: _col0, _col1
Statistics: Num rows: 0 Data size: 0 Basic stats: NONE Column stats: NONE
Select Operator
expressions: _col0 (type: string), _col1 (type: bigint)
outputColumnNames: _col0, _col1
Statistics: Num rows: 0 Data size: 0 Basic stats: NONE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 0 Data size: 0 Basic stats: NONE Column stats: NO NE
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutput Format
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
hive (liguodong)> explain extended select no,count(*) from testudf group by no;
OK
Explain
ABSTRACT SYNTAX TREE:
TOK_QUERY
TOK_FROM
TOK_TABREF
TOK_TABNAME
testudf
TOK_INSERT
TOK_DESTINATION
TOK_DIR
TOK_TMP_FILE
TOK_SELECT
TOK_SELEXPR
TOK_TABLE_OR_COL
no
TOK_SELEXPR
TOK_FUNCTIONSTAR
count
TOK_GROUPBY
TOK_TABLE_OR_COL
no
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: testudf
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column stats: NONE
GatherStats: false
Select Operator
expressions: no (type: string)
outputColumnNames: no
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column stats: NONE
Group By Operator
aggregations: count()
keys: no (type: string)
mode: hash
outputColumnNames: _col0, _col1
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: string)
sort order: +
Map-reduce partition columns: _col0 (type: string)
Statistics: Num rows: 0 Data size: 30 Basic stats: PARTIAL Column stats: NONE
tag: -1
value expressions: _col1 (type: bigint)
Path -> Alias:
hdfs://nameservice1/user/hive/warehouse/liguodong.db/testudf [testudf]
Path -> Partition:
hdfs://nameservice1/user/hive/warehouse/liguodong.db/testudf
Partition
base file name: testudf
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
properties:
COLUMN_STATS_ACCURATE true
bucket_count -1
columns no,num
columns.comments
columns.types string:string
field.delim
file.inputformat org.apache.hadoop.mapred.TextInputFormat
file.outputformat org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
line.delim
location hdfs://nameservice1/user/hive/warehouse/liguodong.db/testudf
name liguodong.testudf
numFiles 1
numRows 0
rawDataSize 0
serialization.ddl struct testudf { string no, string num}
serialization.format
serialization.lib org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
totalSize 30
transient_lastDdlTime 1437374988
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
properties:
COLUMN_STATS_ACCURATE true
bucket_count -1
columns no,num
columns.comments
columns.types string:string
field.delim
file.inputformat org.apache.hadoop.mapred.TextInputFormat
file.outputformat org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
line.delim
location hdfs://nameservice1/user/hive/warehouse/liguodong.db/testudf
name liguodong.testudf
numFiles 1
numRows 0
rawDataSize 0
serialization.ddl struct testudf { string no, string num}
serialization.format
serialization.lib org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
totalSize 30
transient_lastDdlTime 1437374988
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
name: liguodong.testudf
name: liguodong.testudf
Truncated Path -> Alias:
/liguodong.db/testudf [testudf]
Needs Tagging: false
Reduce Operator Tree:
Group By Operator
aggregations: count(VALUE._col0)
keys: KEY._col0 (type: string)
mode: mergepartial
outputColumnNames: _col0, _col1
Statistics: Num rows: 0 Data size: 0 Basic stats: NONE Column stats: NONE
Select Operator
expressions: _col0 (type: string), _col1 (type: bigint)
outputColumnNames: _col0, _col1
Statistics: Num rows: 0 Data size: 0 Basic stats: NONE Column stats: NONE
File Output Operator
compressed: false
GlobalTableId: 0
directory: hdfs://nameservice1/tmp/hive-root/hive_2015-07-21_09-51-37_330_7990199479532530033-1/-mr-10000/.hive-staging_hive_2015-07-21_09-51-37_330_7990199479532530033-1/-ext-10001
NumFilesPerFileSink: 1
Statistics: Num rows: 0 Data size: 0 Basic stats: NONE Column stats: NONE
Stats Publishing Key Prefix: hdfs://nameservice1/tmp/hive-root/hive_2015-07-21_09-51-37_330_7990199479532530033-1/-mr-10000/.hive-staging_hive_2015-07-21_09-51-37_330_7990199479532530033-1/-ext-10001/
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
properties:
columns _col0,_col1
columns.types string:bigint
escape.delim \
hive.serialization.extend.nesting.levels true
serialization.format 1
serialization.lib org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
TotalFiles: 1
GatherStats: false
MultiFileSpray: false
Stage: Stage-0
Fetch Operator
limit: -1
静态分区
动态分区
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partltlon.mode=nonstrict;
set hive.enforce.bucketing=true;
set hive.enforce.sorting=true;
表优化数据目标:相同数据尽量聚集在一起
每个查询被hive转化成多个阶段,有些阶段关联性不大,则可以并行化执行,减少执行时问。
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=8;
eg:
select num
from
(select count(city) as num from city
union all
select count(province) as num from province
)tmp;
set hive.exec.mode.local.auto=true;
当一个job满足如下条件才能真正使用本地模式:
1.job的输入数据大小必须小于参数:
hive.exec.mode.local.inputbytes.max
(默认128MB)
2.job的map数必须小于参数:
hive.exec.mode.local.auto.tasks.max
(默认4)
3.job的reduce数必须为0或者1
set hive.input.format=
org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
合并文件数由mapred.max.split.size
限制的大小决定。
set hive.merge.smallfiles.avgsize=256000000;
当输出文件平均大小小于该值,启动新job合并文件
set hive.merge.size.per.task=64000000;
合并之后的文件大小
set mapred.job.reuse.jvm.num.tasks=20;
JVM重利用可以是job长时间保留slot,直到作业结束,这在对于有较多任务和较多小文件的任务是非常有意义的,减少执行时间。当然这个值不能设置过大,因为有些作业会有reduce任务,如果reduce任务没有完成,则map任务占用的slot不能释放,其他的作业可能就需要等待。
中间压缩就是处理hive查询的多个job之间的数据,对中间压缩,
最好选择一个节省CPU耗时的压缩方式。
set hive.exec.compress.intermediate=true;
set hive.intermediate.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
set hive.intermediate.compression.type=BLOCK;
最终的输出也可以压缩,选择一个压缩效果比较好的,节省了磁盘空间,但是cpu比较耗时。
set hive.exec.compress.output=true;
set mapred.output.compression.codec=
org.apache.hadoop.io.compress.GzipCodec;
set mapred.output.compression.type=BLOCK:
hive.optimize.skewjoin=true;
如果是join过程出现倾斜应该设置为true
set hive.skewjoin.key=100000;
这个是join的键对应的记录条数超过这个值则会进行优化。
自动执行
set hive.auto.convert.join=true;
hive.mapjoin.smalltable.filesize默认值是25mb
手动执行
select /*+mapjoin(A)*/ f.a,f.b from A t join B f on(f.a==t.a)
简单总结一下,mapjoin的使用场景:
1、关联操作中有一张表非常小
2、(不等值)的链接操作时
注:小表尽量设置小一点或用手动方式。
两个表以相同方式划分捅。
两个表的桶个数是倍数关系。
create table ordertab(cid int,price,float)clustered by(cid) into 32 buckets;
create table customer(id int,first string)clustered by(id) into 32 buckets;
select price from ordertab t join customer s on t.cid=s.id
join优化前
select m.cid, u.id from order m join customer u on m.cid=u.id
where m.dt='2013-12-12
join优化后
select m.cid, u.id from
(select cid from order where dt='2013-12-12') m
join customer u on m.cid=u.id;
这样就能减少join连接的数据量。
hive.groupby.skewindata=true;
如果是group by过程出现倾斜应该设置为true。
set hive.groupby.mapaggr.checkinterval=100000;
这个是group的键对应的记录条数超过这个值则会进行优化。
优化前(启动一个job,数据量大时,一个reduce负载过重)
select count(distinct id) from tablename;
优化后(启动两个job)
select count(1) from (select distinct id from tablename)tmp;
select count(1) from (select id from tablename group by id)tmp;
优化前
select a,sum(b),count(distinct c),count(distinct d) from test group by a;
优化后
select a, sum(b) as b,count(c) as c, count(d) as d
from(
select a, 0 as b, c, null as d from test group by a,c
union all
select a, 0 as b, null as c, d from test group by a,d
union all
select a,b,null as c,null as d from test
)tmpl
group by a;
修改map个数进行优化
直接设置mapred.map.tasks无效
set mapred.map.tasks=10;
map个数的计算过程
(1)默认map个数
default_num=total_size/block_size;
(2)期望大小
goal_num=mapred.map.tasks;
(3)设置处理的文件大小
split_size=max(mapred.min.split.size,b1ock_size);
split_num=total_size/split_size;
(4)计算的map个数
compute_map_num=min(split_num,max(default_num,goal_num))
经过以上的分析,在设置map个数的时候,可以简单的总结为以下几点:
1)如果想增加map个数,则设置mapred.map.tasks为一个较大的值。
2)如果想减小map个数,则设置mapred.min.split.size为一个较大的值。有如下两种情况:
情况1:输入文件size巨大,但不是小文件增大mapred.min.split.size
的值。
情况2:输入文件数量巨大,且都是小文件,就是单个文件的size小于blockSize。
这种情况通过增大mapred.min.spllt.size不可行,
需要使用CombineFileInputFormat
将多个input path合并成一个
InputSplit送给mapper处理,从而减少mapper的数量。
map端聚合
map阶段进行combiner
set hive.map.aggr=true:
推测执行
启动多个相同的map,谁先执行完,用谁的。
set mapred.map.tasks.speculative.execution=true
根据需要配置相应参数。
Map端
io.sort.mb
io.sort.spill.percent
min.num.spill.for.combine
io.sort.factor
io.sort.record.percent
Reduce端
mapred.reduce.parallel.copies
mapred.reduce.copy.backoff
io.sort.factor
mapred.job.shuffle.input.buffer.percent
mapred.job.reduce.input.buffer.percent
需要reduce操作的查询
聚合函数sum,count,distinct
高级查询group by,join,distribute by,cluster by…
order by
比较特殊,只需要一个reduce,设置reduce个数无效。
推断执行
设置mapred.reduce.tasks.speculative.execution
或者hive.mapred.reduce.tasks.speculative.execution
效果都一样。
设置Reduce
set mapred.reduce.tasks=10;
直接设置
hive.exec.reducers.max
默认:999
hive.exec.reducers.bytes.per.reducer
默认:1G
计算公式
maxReducers=hive.exec.reducers.max
perReducer=hive.exec.reducers.bytes.per.reducer
numRTasks=min[maxReducers,input.size/perReducer]