- Python爬虫:从图片或扫描文档中提取文字数据的完整指南
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言数据挖掘c++
1.引言随着大数据技术的不断进步,图像数据逐渐成为了许多行业中重要的数据源之一。图像中不仅包含了丰富的视觉信息,还可能蕴含着大量的文字数据。对于科研、企业、政府等多个领域而言,如何从图片或扫描文档中提取出有价值的文字信息是一个亟待解决的问题。在这一过程中,OCR(OpticalCharacterRecognition,光学字符识别)技术成为了解决这一问题的重要工具。在本文中,我们将探讨如何使用Py
- 大数据技术之集群数据迁移
dfs.namenode.rpc-address.nameservice1.namenode30hadoop104:8020dfs.namenode.rpc-address.nameservice1.namenode37hadoop106:8020dfs.namenode.http-address.nameservice1.namenode30hadoop104:9870dfs.namenode.
- 大数据领域数据产品的零售行业应用创新模式
大数据洞察
大数据与AI人工智能大数据零售单例模式ai
大数据领域数据产品的零售行业应用创新模式关键词:大数据、零售行业、数据产品、应用创新、客户洞察、智能决策、数字化转型摘要:本文深入探讨了大数据技术在零售行业中的应用创新模式。我们将从零售行业数字化转型的背景出发,分析大数据产品如何重塑零售价值链,包括客户洞察、供应链优化、精准营销和智能决策等方面。文章将详细介绍相关技术原理、算法实现和实际应用案例,为零售企业提供可操作的大数据应用框架和创新思路。1
- 大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码
Echo_Wish
大数据高阶实战秘籍大数据
大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码今天我们聊一个听起来很“软”的话题——企业文化,但从一个不太“软”的角度来看:大数据如何参与企业文化的建设与提升。企业文化往往被看作无形资产,是团队凝聚力、创新力的源泉。但传统“喊口号”式的文化建设常常效果有限。大数据技术的兴起,给我们提供了洞察员工心理、量化文化影响的新思路,让文化建设从“感性”走向“理性”,从“盲目”变得“精准”。一、
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- 转行大模型之从大数据到AI:我为何选择投身大模型领域
程序员辣条
大数据人工智能产品经理大模型教程大模型入门大模型学习
作为一名经验丰富的大数据开发工程师,我最近决定扩展自己的职业方向,转向大模型应用开发。这个决定源于对技术趋势的观察、对个人发展的思考,以及对我们行业未来的预判。让我从一个大数据工程师的视角,逐步分析这个决定背后的逻辑。目录1.技术演进:从大数据到大模型1.1大数据技术的发展现状1.2AI与大数据的融合1.3大模型:AI与大数据的集大成者2.技能迁移:大数据到大模型的自然过渡2.1数据处理能力的价值
- 大数据项目-Django基于大数据技术实现的农产品销售系统
IT实战课堂-玲琳娜
计算机毕业设计大数据javaspark爬虫
《[含文档+PPT+源码等]Django基于大数据技术实现的农产品销售系统》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、包运行成功以及课程答疑与微信售后交流群、送查重系统不限次数免费查重等福利!数据库管理工具:phpstudy/Navicat或者phpstudy/sqlyog后台管理系统涉及技术:后台使用框架:Django前端使用技术:Vue,HTML5,CSS3、JavaScrip
- 大数据未来发展的趋势与挑战
倒霉男孩
大数据
随着信息技术的飞速发展,大数据已经成为推动社会进步和产业变革的重要力量。从商业决策到医疗健康,从智慧城市到人工智能,大数据技术的应用无处不在。未来,随着5G、物联网(IoT)、人工智能(AI)等技术的深度融合,大数据的发展将迎来更广阔的空间,同时也面临诸多挑战。本文将探讨大数据未来的发展趋势、应用前景以及可能面临的问题。一、大数据未来的发展趋势数据量持续爆发式增长随着5G网络的普及和物联网设备的广
- 集装箱智慧通关系统如何用AI技术重塑物流效率?
在全球贸易和物流高速发展的今天,港口、物流园区及企业的闸口管理面临巨大挑战——如何提升通关效率、保障货物安全并降低运营成本?集装箱智慧通关系统依托先进的AI视觉识别、物联网及大数据技术,为行业提供了智能化解决方案。核心技术:AI视觉+物联网赋能传统闸口依赖人工核验集装箱号、车辆信息,效率低且易出错。而智慧通关系统通过高精度摄像头+AI算法,可自动识别集装箱编号、货车车牌、货物类型等关键信息,准确率
- 合规视角下银行智能客服风险防控
AI 智能服务
智能客服人工智能AIGC数据库chatgpt
1.AI驱动金融变革的政策与技术背景政策导向:我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。技术支撑:云计算、大数据技术成熟为AI发展奠定了基础。深度学习算法的突破则引爆了本轮AI浪潮,显著提升了复杂任务处理精度,进而推动了计算机视觉、机器学习、自然语言处理(NL
- 大数据时代:如何构建高效的数据中台架构?
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据架构ai
大数据时代:如何构建高效的数据中台架构?关键词:数据中台、架构设计、数据治理、数据服务、微服务架构、云计算、大数据技术摘要:在企业数字化转型加速的背景下,数据中台作为连接数据资源与业务应用的核心枢纽,已成为释放数据价值的关键基础设施。本文从数据中台的核心概念出发,系统解析其技术架构与实施路径,涵盖数据采集、存储计算、治理服务等核心模块的设计原理。通过Python代码示例演示数据清洗与服务接口开发,
- YashanDB数据库的技术路线图及未来规划
数据库
如何优化数据库的查询速度是现代数据管理领域面临的一个重要问题。随着数据量的急剧增长和多样化需求的跑量,如何保障系统的高效性和可用性已成为数据库设计与部署的关键。YashanDB,作为一款新兴的数据库系统,为应对这一挑战,制定了一系列技术路线图与未来规划,旨在提升查询性能、数据处理能力、以及系统可扩展性。核心技术点分析体系架构设计YashanDB的体系架构基于现代云计算与大数据技术,设计了包含单机、
- 基于大数据的数据挖掘、数据中台、数据安全架构设计方案:核心技术与架构、大数据平台与数据管理、建模平台与数据治理、应用案例与优势
公众号:优享智库
数字化转型数据治理主数据数据仓库大数据数据挖掘架构
本文介绍了基于大数据的数据挖掘、数据中台、数据安全架构设计方案,涵盖了从技术架构到功能应用的全方位内容。核心技术与架构IT环境融合:构建了包含网关、云端、终端、物联网、反病毒技术、PC、核心层、物理机、IOT终端、基于操作系统的文件识别、反黑客技术、大数据技术、移动、汇聚层、虚拟化、工业控制系统、基于网络的协议解析、基于大数据的数据挖掘、信创、接入层、云/容器、工业互联网、身份安全技术、基于密码的
- 挑战杯应用赛道
万能小贤哥
深度学习人工智能python服务器
农作物病虫害智能监测系统:AI赋能农业,守护绿色粮仓在乡村振兴与农业现代化发展的时代背景下,农作物病虫害防治是保障粮食安全、推动农业可持续发展的关键环节。传统人工巡检效率低、误判率高,难以满足现代农业规模化、精细化的生产需求。农作物病虫害智能监测系统应运而生,依托人工智能、物联网与大数据技术,打造“监测-诊断-预警-防治”一体化解决方案,为农业生产装上智能“千里眼”与“智慧脑”,在挑战杯应用赛道中
- Java 大数据在智能教育在线实验室设备管理与实验资源优化中的应用
知识产权13937636601
计算机java大数据开发语言
全球教育实验室设备年闲置率超35%,而高峰时段实验排队长达2.3周。某“双一流”高校部署本系统后,设备利用率从41%提升至89%,平均实验等待时间缩短78%。本文提出基于Java大数据技术的智慧实验室解决方案:多源设备管控中枢:通过OPCUA/Modbus转换器接入87类、4.2万台异构设备动态调度引擎:融合强化学习与图算法实现设备-课程-学生的秒级最优匹配安全双保险机制:毫米波雷达行为识别+试剂
- python基于spark的新闻推荐系统数据分析可视化爬虫的设计与实现pycharm毕业设计项目
QQ_188083800
pythonspark数据分析
目录具体实现截图课题项目源码功能介绍可定制设计功能创新点开发流程Scrapy爬虫框架爬虫核心代码展示论文书写大纲详细视频演示源码获取具体实现截图课题项目源码功能介绍基于Python大数据技术进行网络爬虫的设计,框架使用Scrapy.系统设计支持以下技术栈前端开发框架:vue.js数据库mysql版本不限后端语言框架支持:1java(SSM/springboot)-idea/eclipse2.pyt
- 【直播回顾】MaxCompute 技术公开课第二季
weixin_33708432
大数据
MaxCompute技术公开课第二季已经结束,共进行了5次大数据技术直播,有近6000名用户、大数据专家、技术牛人、大数据爱好者参与其中。我们为大家整理了一下直播的PPT和视频内容,方便大家随时学习。以下是直播干货:主题:MaxCompute客户端-odpscmd操作使用:分享嘉宾:曲宁阿里巴巴计算平台产品专家PPT下载地址:https://yq.aliyun.com/download/2943视
- 大数据从入门到入魔系列————大数据治理技术栈&技术选型
小禾科技
大数据大数据hadoopsparknosql数据仓库ETL
文章目录前言一、大数据的历史二、大数据的必要性2.1为什么要学习大数据2.2大数据维度2.3大数据处理生活场景三、大数据处理问题模式四、大数据的学习路线4.1大数据技术栈4.2大数据学习路线献给读者福利福利免费的大数据学习资料网盘地址:点我!福利福利免费的大数据学习资料网盘地址:点我!福利福利免费的大数据学习资料网盘地址:点我!前言随着信息技术的迅猛发展,我们正处在一个数据驱动的世界中。每一天,全
- 智能个人信用修复策略推荐与执行系统
AGI大模型与大数据研究院
AI大模型应用开发实战ai
智能个人信用修复策略推荐与执行系统关键词个人信用智能算法数据处理信用评分信用修复摘要本文将深入探讨智能个人信用修复策略推荐与执行系统的设计与实现。随着人工智能和大数据技术的迅速发展,个人信用修复已成为金融科技领域的重要研究方向。本文首先介绍了信用体系的重要性及智能个人信用修复的需求,随后详细阐述了智能个人信用修复的核心概念,包括个人信用、信用评级及智能信用修复策略。接着,文章深入分析了人工智能与机
- 从物理机到K8S:应用系统部署方式的演进及其影响
架构成长指南
云原生kubernetes容器云原生
公众号「架构成长指南」,专注于生产实践、云原生、分布式系统、大数据技术分享。概述随着科技的进步,软件系统的部署架构也在不断演进,从以前传统的物理机到虚拟机、Docker和Kubernetes,我们经历了一系列变化。这些技术的引入给我们带来了更高的资源利用率、更快的部署速度和更强大的扩展性,下面让我们一起探索这些演进,了解如何从传统部署走向现代化架构,为软件系统的开发和部署带来更多的便利和灵活性。物
- Hadoop与大数据之间的关系和区别
一个鬼脸让我难安
程序员大数据程序员编程语言hadoop
走进大数据,一种新兴的数据挖掘技术,它正在让大数据处理和分析变得更便宜更快速。大数据技术一旦进入超级计算时代,很快便可应用于普通企业,在遍地开花的过程中,它将改变许多行业业务经营的模式。在计算机世界里,大数据被定义为一种使用非传统的数据过滤工具,对大量有序或无序数据集合进行的挖掘过程,它包括但不仅限于分布式计算(Hadoop)。大数据已经站在了数据存储宣传的风口浪尖,也存在着大量不确定因素,这点上
- 什么是数据孤岛?如何实现从数据孤岛到数据共享?
Leo.yuan
数据大数据人工智能数据库数据分析数据库架构
目录一、数据孤岛是什么?(一)数据孤岛的定义(二)数据孤岛怎么形成的二、数据孤岛带来的问题(一)数据冗余和不一致(二)决策效率低下(三)业务流程不畅(四)创新能力受限三、如何实现数据共享(一)建立统一的数据管理体系(二)采用先进的技术手段1.数据集成技术2.数据接口和API技术3.云计算和大数据技术(三)加强部门协作和沟通1.建立跨部门的合作机制2.加强员工培训和教育3.建立激励机制(四)强化数据
- 史上最全的“大数据”学习资源整理
风中追风风
大数据从无到有系列大数据技术从无到有大数据数据大数据资源
当前,整个互联网正在从IT时代向DT时代演进,大数据技术也正在助力企业和公众敲开DT世界大门。当今“大数据”一词的重点其实已经不仅在于数据规模的定义,它更代表着信息技术发展进入了一个新的时代,代表着爆炸性的数据信息给传统的计算技术和信息技术带来的技术挑战和困难,代表着大数据处理所需的新的技术和方法,也代表着大数据分析和应用所带来的新发明、新服务和新的发展机遇。为了帮助大家更好深入了解大数据,云栖社
- 聚焦数据,探索分布式数据库与湖仓一体的前沿应用
数字天下
数据治理数据清洗
一、分布式数据库的应用与挑战分布式数据库系统是一种高效、可扩展、可靠的数据库系统,适用于处理大规模的数据和应对复杂的业务需求。随着云计算和大数据技术的不断发展,分布式数据库系统将会得到更广泛的应用和发展。51CTO学堂认证讲师多哥和星环科技数据库资深架构师陈潜龙分别进行了主题为“揭开神秘的分布式数据库”和“星环分布式分析型数据库实践之路”的技术分享。首先,多哥从大数据时代的数据特点、新时代的业务需
- 大数据领域的游戏数据运营策略
大数据洞察
大数据游戏ai
大数据领域的游戏数据运营策略关键词:大数据、游戏数据运营、用户行为分析、精准营销、游戏平衡摘要:本文聚焦于大数据领域下的游戏数据运营策略。在当今游戏市场竞争激烈的环境中,充分利用大数据技术能够为游戏的运营和发展提供有力支持。文章从背景介绍入手,阐述了大数据在游戏数据运营中的重要性和应用范围,详细讲解了核心概念如用户画像、游戏数据指标等及其相互联系。接着深入剖析核心算法原理,包括聚类分析、关联规则挖
- GreenPlum+PostGIS实现海量空间数据存储
从地图看世界
GIS大数据数据库sqldatabasepostgresql
使用分布式集群数据库Greenplum结合PostGIS空间扩展,可存储结构化的海量地图数据,同时,使用分布式文件存储系统HDFS存储相关文件资源,可实现海量栅格数据的存储和读取,基于大数据技术架构的云平台,数据存储和计算架构可根据数据规模灵活伸缩,随时扩展。一、基于Greenplum集群实现海量数据存储技术Greenplum是一款开源的分布式集群数据库,采用MPP(大规模并行处理)架构,具有PB
- 分享全国数字人才技能提升师资培训班 第五期邀请函
泰迪智能科技01
人工智能人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- 大数据技术全景解析:HDFS、HBase、MapReduce 与 Chukwa
coding随想
大数据大数据hdfshbase
大数据技术全景解析:HDFS、HBase、MapReduce与Chukwa在当今这个信息爆炸的时代,大数据已经成为企业竞争力的重要组成部分。从电商的用户行为分析到金融的风险控制,从医疗健康的数据挖掘到智能制造的实时监控,大数据技术无处不在。然而,面对PB级甚至EB级的数据规模,传统的计算和存储方式已无法胜任。于是,以Hadoop生态系统为代表的大数据技术应运而生。本文将带你走进大数据的世界,重点介
- 分享全国数字人才技能提升师资培训班 第五期
泰迪智能科技01
人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement