网格搜索 GridSearchCV\训练集、验证集和测试集

文章目录

  • 一、GridSearchCV简介
    • 1.1 参数解释
    • 1.2 简单的网格搜索 iris_svc
  • 二、优化
    • 2.1 训练集、验证集和测试集
    • 2.2 Grid Search with Cross Validation
  • 三、GridSearchCV
    • 3.1 GridSearchCV 代码
    • 3.2 总结
  • 有趣的事,Python永远不会缺席
  • 培训说明

一、GridSearchCV简介

  GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数。但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果。这个时候就是需要动脑筋了。数据量比较大的时候可以使用一个快速调优的方法——坐标下降。它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化;再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕。这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging再优化。
  通常算法不够好,需要调试参数时必不可少。比如SVM的惩罚因子C,核函数kernel,gamma参数等,对于不同的数据使用不同的参数,结果效果可能差1-5个点,sklearn为我们提供专门调试参数的函数grid_search。
  Grid Search:一种调优方法,在参数列表中进行穷举搜索,对每种情况进行训练,找到最优的参数;由此可知,这种方法的主要缺点是 比较耗时

1.1 参数解释

from sklearn.model_selection import GridSearchCV
GridSearchCV(
    estimator,
    param_grid,
    scoring=None,
    fit_params=None,
    n_jobs=1,
    iid=True,
    refit=True,
    cv=None,
    verbose=0,
    pre_dispatch='2*n_jobs',
    error_score='raise',
    return_train_score='warn')

Parameters:

estimator:所使用的分类器,或者pipeline
param_grid:值为字典或者列表,即需要最优化的参数的取值
scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring=‘roc_auc’,根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。返回给定测试集合的平均准确率(mean accuracy),浮点型数值。
n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。
pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次
iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。
cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。
refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。
verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。

Attributes:

best_estimator_:效果最好的分类器

best_score_:成员提供优化过程期间观察到的最好的评分

best_params_:描述了已取得最佳结果的参数的组合

best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。

Methods:

decision_function:使用找到的参数最好的分类器调用decision_function。
**fit(X, y=None, groups=None, fit_params):训练
get_params(deep=True):获取这个估计器的参数。
predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)
predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)
predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)
score(X, y=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。
transform(X):调用最优分类器进行对X的转换。

1.2 简单的网格搜索 iris_svc

from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split

iris = load_iris()
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=0)#默认size=0.25
print("Size of training set:{} size of testing set:{}".format(X_train.shape[0],X_test.shape[0]))
# Size of training set:112 size of testing set:38
#   grid search start
best_score = 0
for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        svm = SVC(gamma=gamma,C=C)#对于每种参数可能的组合,进行一次训练;
        svm.fit(X_train,y_train)
        score = svm.score(X_test,y_test)
        if score > best_score:#找到表现最好的参数
            best_score = score
            best_parameters = {'gamma':gamma,'C':C}
####   grid search end

print("Best score:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))

'''
Best score:0.97
Best parameters:{'gamma': 0.001, 'C': 100}
'''

存在的问题:
  原始数据集划分成训练集和测试集以后,其中测试集除了用作调整参数,也用来测量模型的好坏;这样做导致最终的评分结果比实际效果要好。(因为测试集在调参过程中,送到了模型里,而我们的目的是将训练模型应用在unseen data上);

二、优化

  对训练集再进行一次划分,分成训练集和验证集,这样划分的结果就是:原始数据划分为3份,分别为:训练集、验证集和测试集;其中训练集用来模型训练,验证集用来调整参数,而测试集用来衡量模型表现好坏。

2.1 训练集、验证集和测试集

from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
# https://www.cnblogs.com/ysugyl/p/8711205.html
iris = load_iris()
X_trainval,X_test,y_trainval,y_test = train_test_split(iris.data,iris.target,random_state=0)
X_train,X_val,y_train,y_val = train_test_split(X_trainval,y_trainval,random_state=1)
print("Size of training set:{} size of validation set:{} size of teseting set:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0]))

best_score = 0.0
for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        svm = SVC(gamma=gamma,C=C)
        svm.fit(X_train,y_train)
        score = svm.score(X_val,y_val)
        if score > best_score:
            best_score = score
            best_parameters = {'gamma':gamma,'C':C}
svm = SVC(**best_parameters) #使用最佳参数,构建新的模型
svm.fit(X_trainval,y_trainval) #使用训练集和验证集进行训练,more data always results in good performance.
test_score = svm.score(X_test,y_test) # evaluation模型评估
print("Best score on validation set:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))
print("Best score on test set:{:.2f}".format(test_score))

best_score = 0.0
for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        svm = SVC(gamma=gamma,C=C)
        scores = cross_val_score(svm,X_trainval,y_trainval,cv=5) #5折交叉验证
        score = scores.mean() #取平均数
        if score > best_score:
            best_score = score
            best_parameters = {"gamma":gamma,"C":C}
svm = SVC(**best_parameters)
svm.fit(X_trainval,y_trainval)
test_score = svm.score(X_test,y_test)
print("Best score on validation set:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))
print("Score on testing set:{:.2f}".format(test_score))

运行结果:

'''
Size of training set:84 size of validation set:28 size of teseting set:38
Best score on validation set:0.96
Best parameters:{'gamma': 0.001, 'C': 10}
Best score on test set:0.92
Best score on validation set:0.97
Best parameters:{'gamma': 0.01, 'C': 100}
Score on testing set:0.97
'''

2.2 Grid Search with Cross Validation

  然而,这种间的的grid search方法,其最终的表现好坏与初始数据的划分结果有很大的关系,为了处理这种情况,我们采用交叉验证的方式来减少偶然性。

from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
# https://www.cnblogs.com/ysugyl/p/8711205.html
iris = load_iris()
X_trainval,X_test,y_trainval,y_test = train_test_split(iris.data,iris.target,random_state=0)
X_train,X_val,y_train,y_val = train_test_split(X_trainval,y_trainval,random_state=1)
print("Size of training set:{} size of validation set:{} size of teseting set:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0]))

best_score = 0.0
for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        svm = SVC(gamma=gamma,C=C)
        scores = cross_val_score(svm,X_trainval,y_trainval,cv=5) #5折交叉验证
        score = scores.mean() #取平均数
        if score > best_score:
            best_score = score
            best_parameters = {"gamma":gamma,"C":C}
svm = SVC(**best_parameters)
svm.fit(X_trainval,y_trainval)
test_score = svm.score(X_test,y_test)
print("Best score on validation set:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))
print("Score on testing set:{:.2f}".format(test_score))

运行结果:

Size of training set:84 size of validation set:28 size of teseting set:38
Best score on validation set:0.97
Best parameters:{'gamma': 0.01, 'C': 100}
Score on testing set:0.97

三、GridSearchCV

  交叉验证经常与网格搜索进行结合,作为参数评价的一种方法,这种方法叫做grid search with cross validation。sklearn因此设计了一个这样的类GridSearchCV,这个类实现了fit,predict,score等方法,被当做了一个estimator,使用fit方法,该过程中:(1)搜索到最佳参数;(2)实例化了一个最佳参数的estimator;

3.1 GridSearchCV 代码

from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
# https://www.cnblogs.com/ysugyl/p/8711205.html
iris = load_iris()
X_trainval,X_test,y_trainval,y_test = train_test_split(iris.data,iris.target,random_state=0)
X_train,X_val,y_train,y_val = train_test_split(X_trainval,y_trainval,random_state=1)
print("Size of training set:{} size of validation set:{} size of teseting set:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0]))

#把要调整的参数以及其候选值 列出来;
param_grid = {"gamma":[0.001,0.01,0.1,1,10,100],
             "C":[0.001,0.01,0.1,1,10,100]}
print("Parameters:{}".format(param_grid))

grid_search = GridSearchCV(SVC(),param_grid,cv=5) #实例化一个GridSearchCV类
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=10)
grid_search.fit(X_train,y_train) #训练,找到最优的参数,同时使用最优的参数实例化一个新的SVC estimator。
print("Test set score:{:.2f}".format(grid_search.score(X_test,y_test)))
print("Best parameters:{}".format(grid_search.best_params_))
print("Best score on train set:{:.2f}".format(grid_search.best_score_))

'''运行结果
Size of training set:84 size of validation set:28 size of teseting set:38
Parameters:{'gamma': [0.001, 0.01, 0.1, 1, 10, 100], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}
Test set score:0.97
Best parameters:{'C': 10, 'gamma': 0.1}
Best score on train set:0.98
'''

3.2 总结

  1. 选择并构建训练模型model

  2. 将训练模型model投入到GridSearchCV中,得到GridSearchCV模型grid_model

  3. 用grid_model拟合训练集数据,选择在validation_dataset上效果最好的参数的模型best_estimator

  4. best_estimator

  • 用best_estimator拟合训练集(得到的结果应该与之前不同,因为之前用交叉验证等方法对训练集进行了分割)

  • 用best_estimator拟合测试集

  1. 结果可视化:AUC曲线,AUPR曲线

:Grid Search 调参方法存在的共性弊端就是:耗时;参数越多,候选值越多,耗费时间越长!所以,一般情况下,先定一个大范围,然后再细化。

有趣的事,Python永远不会缺席

欢迎关注小婷儿的博客

    文章内容来源于小婷儿的学习笔记,部分整理自网络,若有侵权或不当之处还请谅解

    如需转发,请注明出处:小婷儿的博客python    https://www.cnblogs.com/xxtalhr/

博客园 https://www.cnblogs.com/xxtalhr/

CSDN https://blog.csdn.net/u010986753

有问题请在博客下留言或加作者:
     微信:tinghai87605025 联系我加微信群
     QQ :87605025
     python QQ交流群:py_data 483766429

培训说明

OCP培训说明连接 https://mp.weixin.qq.com/s/2cymJ4xiBPtTaHu16HkiuA

OCM培训说明连接 https://mp.weixin.qq.com/s/7-R6Cz8RcJKduVv6YlAxJA

     小婷儿的python正在成长中,其中还有很多不足之处,随着学习和工作的深入,会对以往的博客内容逐步改进和完善哒。重要的事多说几遍。。。。。。

你可能感兴趣的:(GridSearchCV)