前文已经讲了log4j2的AsyncAppender的实现【log4j2异步日志解读(一)AsyncAppender】,今天我们看看AsyncLogger的实现。
看了这个图,应该很清楚AsyncLogger调用Disruptor,然后直接返回。至于高性能队列 这里已经展开讲了是如何实现的。
我们来看看AsyncLogger的调用流程,log.info()首先会调用抽象类AbstractLogger,然后调用了Logger的logMessage。
//Logger.java @Override public void logMessage(final String fqcn, final Level level, final Marker marker, final Message message, final Throwable t) { final Message msg = message == null ? new SimpleMessage(Strings.EMPTY) : message; final ReliabilityStrategy strategy = privateConfig.loggerConfig.getReliabilityStrategy(); strategy.log(this, getName(), fqcn, marker, level, msg, t); }
strategy.log是调用了ReliabilityStrategy接口,日志事件传递到适当的appender的对象的接口,然后调用了LoggerConfig.log()方法,来创建有关记录消息的上下文信息。
//LoggerConfig.java @PerformanceSensitive("allocation") public void log(final String loggerName, final String fqcn, final Marker marker, final Level level, final Message data, final Throwable t) { Listprops = null; if (!propertiesRequireLookup) { props = properties; } else { if (properties != null) { props = new ArrayList<>(properties.size()); final LogEvent event = Log4jLogEvent.newBuilder() .setMessage(data) .setMarker(marker) .setLevel(level) .setLoggerName(loggerName) .setLoggerFqcn(fqcn) .setThrown(t) .build(); for (int i = 0; i < properties.size(); i++) { final Property prop = properties.get(i); final String value = prop.isValueNeedsLookup() // since LOG4J2-1575 ? config.getStrSubstitutor().replace(event, prop.getValue()) // : prop.getValue(); props.add(Property.createProperty(prop.getName(), value)); } } } final LogEvent logEvent = logEventFactory.createEvent(loggerName, marker, fqcn, level, data, props, t); try { log(logEvent, LoggerConfigPredicate.ALL); } finally { // LOG4J2-1583 prevent scrambled logs when logging calls are nested (logging in toString()) ReusableLogEventFactory.release(logEvent); } }
接着我们来看AsyncLoggerConfig.logToAsyncDelegate()方法,首先会调用Disruptor,放入环形队列。如果环形队列阻塞,则执行等待策略。
//AsyncLoggerConfig.java private void logToAsyncDelegate(LogEvent event) { if (!isFiltered(event)) { // Passes on the event to a separate thread that will call // asyncCallAppenders(LogEvent). populateLazilyInitializedFields(event); if (!delegate.tryEnqueue(event, this)) { //如果获取Disruptor队列需要等待则执行等待策略,这里类似AsyncAppender等待策略 handleQueueFull(event); } } } private void handleQueueFull(final LogEvent event) { if (AbstractLogger.getRecursionDepth() > 1) { // LOG4J2-1518, LOG4J2-2031 // If queue is full AND we are in a recursive call, call appender directly to prevent deadlock AsyncQueueFullMessageUtil.logWarningToStatusLogger(); logToAsyncLoggerConfigsOnCurrentThread(event); } else { // otherwise, we leave it to the user preference final EventRoute eventRoute = delegate.getEventRoute(event.getLevel()); // 1、DefaultAsyncQueueFullPolicy---等待队列,转为同步操作策略 // 2、DiscardingAsyncQueueFullPolicy---按照日志等级抛弃日志策略 eventRoute.logMessage(this, event); } }
然后再来看看Disruptor写入 的过程。LogEvent是记录消息的上下文信息的接口,然后调用tryPublishEvent去获取环形队列的位置,然后发布数据到环形队列上。这一块具体可以看笔者前文Disruptor源码分析,这里就不展开讨论。
//AsyncLoggerConfigDisruptor.java @Override public boolean tryEnqueue(final LogEvent event, final AsyncLoggerConfig asyncLoggerConfig) { final LogEvent logEvent = prepareEvent(event); return disruptor.getRingBuffer().tryPublishEvent(translator, logEvent, asyncLoggerConfig); }
日志的消费过程,定义RingBufferLogEventHandler类实现Disruptor的SequenceReportingEventHandler的onEvent方法,从ringbuffer读取事件进行处理。最后会调用该logger绑定的默认appender输出。
最后提供下笔者测试demo
1、Log4j 2的异步记录日志在一定程度上提供更好的吞吐量,但是一旦队列已满,appender线程需要等待,这个时候就需要设置等待策略,AsyncAppender是依赖于消费者最序列最后的消费者,会持续等待。至于异步性能图可以看下官方提供的吞吐量比较图,差异很明显。
2、因为AsyncAppender是采用Disruptor,通过环形队列无阻塞队列作为缓冲,多生产者多线程的竞争是通过CAS实现,无锁化实现,可以降低极端大的日志量时候的延迟尖峰,Disruptor 可是号称一个线程里每秒处理600万订单的高性能队列。
https://logging.apache.org/log4j/2.x/manual/appenders.html#AsyncAppender
log4j、logback、log4j2 历史和关系,我们就在这里不展开讲了。直接上干货,log4j2突出于其他日志的优势,异步日志实现。
看一个东西,首先看官网文档 ,因为前面文章已经讲解了disruptor源码,本文主要展开说说异步日志AsyncAppender和AsyncLogger(基于disruptor实现)。
AsyncLogger笔者下文展开讲。
我们先来看看AsyncApperder核心,就是logger将数据通过append方法放入到阻塞队列中,随后后台线程从队列中取出数据然后进行后续的操作。
那这样看来,就很简单了,一个append()方法,一个后台线程执行就是我们要看的核心代码了。围绕我们要看的类AsyncAppender,来看看类关系图。
主要实现就是logger将数据通过append方法放入到阻塞队列中。
//AsyncAppender.java /** * Actual writing occurs here. * * @param logEvent The LogEvent. */ @Override public void append(final LogEvent logEvent) { if (!isStarted()) { throw new IllegalStateException("AsyncAppender " + getName() + " is not active"); } //创建Log4jLogEvent的对象memento final Log4jLogEvent memento = Log4jLogEvent.createMemento(logEvent, includeLocation); InternalAsyncUtil.makeMessageImmutable(logEvent.getMessage()); //transfer(memento)将event放入队列 //默认ArrayBlockingQueueFactory 大小1024 if (!transfer(memento)) { if (blocking) { if (AbstractLogger.getRecursionDepth() > 1) { // LOG4J2-1518, LOG4J2-2031 // If queue is full AND we are in a recursive call, call appender directly to prevent deadlock AsyncQueueFullMessageUtil.logWarningToStatusLogger(); logMessageInCurrentThread(logEvent); } else { // delegate to the event router (which may discard, enqueue and block, or log in current thread) final EventRoute route = asyncQueueFullPolicy.getRoute(thread.getId(), memento.getLevel()); route.logMessage(this, memento); } } else { error("Appender " + getName() + " is unable to write primary appenders. queue is full"); logToErrorAppenderIfNecessary(false, memento); } } } private boolean transfer(final LogEvent memento) { return queue instanceof TransferQueue ? ((TransferQueue) queue).tryTransfer(memento) : queue.offer(memento); }
如流程图所示,首先会判断用户是否设置了blocking选项,默认是true,如果设置为false,则Appender直接会ToErrorAppender,如果用户没有配置或者配置为true,则会按照一定的策略来处理这些消息。策略可以分为2种,他们分别为:
1、DefaultAsyncQueueFullPolicy---等待队列,转为同步操作策略
public class DefaultAsyncQueueFullPolicy implements AsyncQueueFullPolicy { @Override public EventRoute getRoute(final long backgroundThreadId, final Level level) { // LOG4J2-471: prevent deadlock when RingBuffer is full and object // being logged calls Logger.log() from its toString() method if (Thread.currentThread().getId() == backgroundThreadId) { return EventRoute.SYNCHRONOUS; } return EventRoute.ENQUEUE; }
2、DiscardingAsyncQueueFullPolicy---按照日志等级抛弃日志策略
//DiscardingAsyncQueueFullPolicy.java @Override public EventRoute getRoute(final long backgroundThreadId, final Level level) { if (level.isLessSpecificThan(thresholdLevel)) { if (discardCount.getAndIncrement() == 0) { LOGGER.warn("Async queue is full, discarding event with level {}. " + "This message will only appear once; future events from {} " + "are silently discarded until queue capacity becomes available.", level, thresholdLevel); } return EventRoute.DISCARD; } return super.getRoute(backgroundThreadId, level); }
主要就是后台线程从队列中取出数据然后进行后续的操作。
//AsyncAppender.java private class AsyncThread extends Log4jThread { private volatile boolean shutdown = false; private final Listappenders; private final BlockingQueue queue; public AsyncThread(final List appenders, final BlockingQueue queue) { super("AsyncAppender-" + THREAD_SEQUENCE.getAndIncrement()); this.appenders = appenders; this.queue = queue; setDaemon(true); } @Override public void run() { while (!shutdown) { LogEvent event; try { event = queue.take(); if (event == SHUTDOWN_LOG_EVENT) { shutdown = true; continue; } } catch (final InterruptedException ex) { break; // LOG4J2-830 } event.setEndOfBatch(queue.isEmpty()); final boolean success = callAppenders(event); if (!success && errorAppender != null) { try { errorAppender.callAppender(event); } catch (final Exception ex) { // Silently accept the error. } } } // Process any remaining items in the queue. LOGGER.trace("AsyncAppender.AsyncThread shutting down. Processing remaining {} queue events.", queue.size()); int count = 0; int ignored = 0; while (!queue.isEmpty()) { try { final LogEvent event = queue.take(); if (event instanceof Log4jLogEvent) { final Log4jLogEvent logEvent = (Log4jLogEvent) event; logEvent.setEndOfBatch(queue.isEmpty()); callAppenders(logEvent); count++; } else { ignored++; LOGGER.trace("Ignoring event of class {}", event.getClass().getName()); } } catch (final InterruptedException ex) { // May have been interrupted to shut down. // Here we ignore interrupts and try to process all remaining events. } } LOGGER.trace("AsyncAppender.AsyncThread stopped. Queue has {} events remaining. " + "Processed {} and ignored {} events since shutdown started.", queue.size(), count, ignored); } ... }
该线程会一直尝试从阻塞队列中获取LogEvent,如果获取成功,调用AppenderRef所引用Appender的append方法。我们也可以看到,AsyncAppender实际上主要是类似于中转,日志异步化,当消息放入阻塞队列,返回成功,这样能够大幅提高日志记录的吞吐。用户可以在权衡性能与日志收集质量上进行权衡配置策略(设置blocking选项),当然也可以设置不同类型的阻塞队列已到达更好的日志记录吞吐。
https://logging.apache.org/log4j/2.x/manual/appenders.html#AsyncAppender
Log4j-1.2.17
log4j里有个Appender:AsyncAppender,这个Appender是用于解决在某一时间里大量的日志信息进入Appender如何去处理的问题。AsyncAppender采用的方案是这样的,以下是AsyncAppender的工作原理图:
AsyncAppender采用的是生产者消费者的模型进行异步地将Logging Event送到对应的Appender中。
(1)生产者:外部应用了Log4j的系统的实时线程,实时将Logging Event传送进AsyncAppender里
(2)中转:Buffer和DiscardSummary
(3)消费者:Dispatcher线程和appenders
工作原理:
1) Logging Event进入AsyncAppender,AsyncAppender会调用append方法,在append方法中会去把logging Event填入Buffer中,当消费能力不如生产能力时,AsyncAppender会把超出Buffer容量的Logging Event放到DiscardSummary中,作为消费速度一旦跟不上生成速度,中转buffer的溢出处理的一种方案。
2) AsyncAppender有个线程类Dispatcher,它是一个简单的线程类,实现了Runnable接口。它是AsyncAppender的后台线程。
Dispatcher所要做的工作是:
① 锁定Buffer,让其他要对Buffer进行操作的线程阻塞。
② 看Buffer的容量是否满了,如果满了就将Buffer中的Logging Event全部取出,并清空Buffer和DiscardSummary;如果没满则等待Buffer填满Logging Event,然后notify Disaptcher线程。
③ 将取出的所有Logging Event交给对应appender进行后面的日志信息推送。
以上是AsyncAppender类的两个关键点:append方法和Dispatcher类,通过这两个关键点实现了异步推送日志信息的功能,这样如果大量的Logging Event进入AsyncAppender,就可以游刃有余地处理这些日志信息了。