- 轻量级模型解读——轻量transformer系列
lishanlu136
#图像分类轻量级模型transformer图像分类
先占坑,持续更新。。。文章目录1、DeiT2、ConViT3、Mobile-Former4、MobileViTTransformer是2017谷歌提出的一篇论文,最早应用于NLP领域的机器翻译工作,Transformer解读,但随着2020年DETR和ViT的出现(DETR解读,ViT解读),其在视觉领域的应用也如雨后春笋般渐渐出现,其特有的全局注意力机制给图像识别领域带来了重要参考。但是tran
- 深度学习入门篇:PyTorch实现手写数字识别
AI_Guru人工智能
深度学习pytorch人工智能
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著的成就。在众多的深度学习框架中,PyTorch以其动态计算图、易用性强和灵活度高等特点,受到了广泛的喜爱。本篇文章将带领大家使用PyTorch框架,实现一个手写数字识别的基础模型。手写数字识别简介手写数字识别是计算机视觉领域的一个经典问题,目的是让计算机能够识别并理解手写数字图像。这个问题通常作为深度学习入门的练习,因为
- 机器学习引领未来:赋能精准高效的图像识别技术革新
刷刷刷粉刷匠
机器学习人工智能
图像识别技术近年来取得了显著进展,深刻地改变了各行各业。机器学习,特别是深度学习的突破,推动了这一领域的技术革新。本文将深入探讨机器学习如何赋能图像识别技术,从基础理论到前沿进展,再到实际应用与挑战展望,为您全面呈现这一领域的最新动态和未来趋势。1.引言在当今数字化和智能化的时代,图像识别技术正逐渐成为人工智能(AI)领域的核心组成部分。随着计算能力的提升和数据量的激增,机器学习特别是深度学习的快
- 【Python第三方库】OpenCV库实用指南
墨辰JC
Pythonopencvpython人工智能学习
文章目录前言安装OpenCV读取图像图像基本操作获取图像信息裁剪图像图像缩放图像转换为灰度图图像模糊处理边缘检测图像翻转图像保存视频相关操作方法讲解读取视频从摄像头读取视频前言OpenCV(OpenSourceComputerVisionLibrary)作为一个强大的计算机视觉库,提供了丰富的图像处理和计算机视觉功能,尤其在图像识别、对象检测、视频分析等领域有着广泛的应用。本文将带领读者使用Pyt
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- halcon第九讲,深度学习结合大数据实现AI智能识别思想
青莲居士_村长
人工智能、大数据、5G1、什么是人工智能、大数据、5G,三者有什么关联。人工智能(ArtificialIntelligence):英文缩写:AI,人工智能是[计算机]科学的一个分支,它企图了解智能的实质,并生产出一种新的能以[人类智能]相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和[专家系统]等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,
- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- 大模型落地指南:从下载到本地化部署全流程解析
网安猫叔
人工智能自然语言处理语言模型AIGC深度学习
一、引言随着人工智能技术的迅猛发展,大规模预训练模型(如GPT-4、BERT等)在自然语言处理、图像识别等领域展现出了卓越的性能。然而,如何将这些强大的模型从理论落地到实际应用中,仍然是许多技术从业者面临的挑战。本篇文章旨在为读者提供一份详尽的大模型落地指南,从模型的下载、文件结构的解析,到本地化部署的具体步骤,全面覆盖整个流程。无论你是初次接触大模型的新手,还是希望深入了解部署细节的资深开发者,
- 2021-01-02随笔
0清婉0
人工智能时代最重要的是机器学习,像数据分析、图像识别、数据挖掘、自然语言处理、语音识别等都是以其为基础的,也可以说人工智能的各种应用都需要机器学习来支撑。现在各大公司越来越注重数据的价值,人工成本也是越来越高,所以机器学习也就变得不可或缺了。数据分析、自然语言处理、语音识别,这将是作为前端人员的我,在2021年学习的重点。现收集几本关于数据分析的书籍,作为参考书籍学习:1.《跟着迪哥学Python
- 开源AI图像识别:支持扫描文件批量识别快速对接数据库存储
思通数科x
人工智能计算机视觉图像处理OCR文本识别
随着数字化转型的不断深入,图像识别技术在各行各业中的应用越来越广泛。文件封识别作为图像识别技术的一个分支,能够有效地提高文件处理的自动化程度和准确性。本文将探讨文件封识别技术的原理、应用场景以及如何将识别后的内容批量对应数据库字段进行存储。开源项目介绍(可本地部署,支持国产化)思通数科研发了一款多模态AI能力引擎,专注于提供自然语言处理(NLP)、情感分析、实体识别、图像识别与分类、OCR识别和语
- 垂类大模型:领域专家参与的重要性
澳鹏Appen
生成式AI人工智能与机器学习人工智能AI生成式AI
随着人工智能(AI)的不断发展,训练数据的完整性和质量至关重要。早期的AI模型专注于处理和分析任务,如图像识别、语音识别和情感分析。这些模型通常是在大型数据集上训练的,标注任务多可以由具有一般技能的人类执行,早期模型中的缺陷可以被标注员轻松识别和纠正。然而近年,AI领域经历了重大变革。当代模型被设计用于更复杂的功能,如推理和总结,旨在处理需要更高认知参与的复杂和多样化场景。这些先进模型不仅需要原始
- 基于ARM芯片与OpenCV的工业分拣机器人项目设计与实现流程详解
极客小张
arm开发opencv机器人单片机计算机视觉人工智能物联网
一、项目概述项目目标和用途本项目旨在设计和实现一套工业分拣机器人系统,能够高效、准确地对不同类型的物品进行自动分拣。该系统广泛应用于物流、仓储和制造业,能够显著提高工作效率,降低人工成本。技术栈关键词ARM芯片步进电机控制OpenCV图像识别无线通信模块传感器(如超声波传感器、红外传感器)二、系统架构设计符合项目需求的系统架构本项目的系统架构主要由以下几个部分组成:控制单元:基于ARM芯片的主控板
- 在国产芯片上实现YOLOv5/v8图像AI识别-【4.2】RK3588获取USB摄像头图像推流RTSP更多内容见视频
橘子的战斗日记
YOLO人工智能音视频
本专栏主要是提供一种国产化图像识别的解决方案,专栏中实现了YOLOv5/v8在国产化芯片上的使用部署,并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。B站配套视频:https://www.bilibili.com/video/BV1or421T74f前言在实际生产过程中,有很多时候不光是通过网络获取rtsp视频流,通常会采用在板子上插上USB摄像头获取画面。今天我将向搭建演示该
- 一文让你搞懂什么是AI大模型
码上飞扬
人工智能大模型AI
近年来,人工智能(AI)技术飞速发展,特别是大模型的出现,给各行各业带来了巨大的变革。无论是自然语言处理、图像识别,还是自动驾驶,AI大模型都展现出了强大的能力和广泛的应用前景。那么,什么是AI大模型?它们有哪些特点和应用场景?本文将带你一探究竟。目录AI大模型的定义AI大模型的发展历程AI大模型的特点AI大模型的应用场景如何训练和使用AI大模型AI大模型的挑战与未来1.AI大模型的定义AI大模型
- Node.js发票识别接口助力企业实现发票的精准高效管理
翔云API
apinode.jsphp开发语言ocr自动化
在金融和会计领域,随着数字化进程的加速,大量的纸质发票处理已经成为了企业效率提升的一个瓶颈。发票文字识别接口的出现,被视为解决这一问题的关键技术创新。通过高精度的图像识别与机器学习技术,将繁琐的手动输入工作转化为自动化的过程,不仅提升了数据处理速度,还极大降低了人为错误。Node.js发票识别接口集成示例:varrequest=require('request');varoptions={'met
- opencv轮廓近似,模板匹配
富士达幸运星
opencv人工智能计算机视觉
在图像处理领域,轮廓近似和模板匹配是两种非常关键的技术,它们广泛应用于计算机视觉、图像分析和图像识别等多个方面。本文将详细介绍如何使用OpenCV库进行轮廓近似和模板匹配,并给出具体的代码示例。一、轮廓近似(ContourApproximation)轮廓近似是指将图像中的轮廓逼近成由直线段组成的多边形或其他简单形状,以减少轮廓的复杂度和数据量。OpenCV提供了cv2.approxPolyDP()
- AI模型:追求全能还是专精?
Lill_bin
杂谈人工智能分布式zookeeper机器学习游戏
AI模型简介人工智能(AI)模型是人工智能系统的核心,它们是经过训练的算法,能够执行特定的任务,如图像识别、自然语言处理、游戏玩法、预测分析等。AI模型的类型很多,可以根据其功能和应用场景进行分类。常见的AI模型类型包括:监督学习模型:这些模型通过训练数据集学习,数据集中包含了输入和对应的输出标签。例子包括决策树、支持向量机(SVM)、神经网络等。无监督学习模型:这些模型处理没有标签的数据,目的是
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- 【Python机器学习】卷积神经网络(CNN)
zhangbin_237
Python机器学习机器学习pythoncnn开发语言自然语言处理
卷积神经网络(CNN)得名于在数据样本上用滑动窗口(或卷积)的概念。卷积在数学中应用很广泛,通常与时间序列数据相关。它是用一个可视化盒子在一个区域内滑动,如下图所示:构建块卷积神经网络最早出现在图像处理和图像识别领域,它能够捕捉每个样本中数据点之间的空间关系,也就能识别出图像中是猫还是狗。卷积网络,也称为convnet,不像传统的前馈网络那样对每个元素(图中的像素)分配权重,而是定义了一组在图像上
- 【区块链 + 物联网】斐得坊智慧停车区块链 | FISCO BCOS应用案例
FISCO_BCOS
2023FISCOBCOS产业应用发展报告区块链物联网
当下,庞大的停车需求场景已经形成一定市场规模,但现有的停车场因产权复杂,且普遍采用承包模式、无法作为抵押品,又因企业现金流难以呈现,停车管理企业较难凭借自身信用来获得金融服务支持。区块链技术具有防篡改的特性,反映在停车大场景内就是利用区块链的多中心化、共识机制、智能合约、信用管理等特性,综合采用高清电子图像识别、车位导航、线上支付等停车管理技术,实现智能缴费停车、预约停车、共享停车、信用停车管理、
- 通义千问-VL-Chat-Int4
九品神元师
python开发语言
Qwen-VL是阿里云研发的大规模视觉语言模型(LargeVisionLanguageModel,LVLM)。Qwen-VL可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL系列模型性能强大,具备多语言对话、多图交错对话等能力,并支持中文开放域定位和细粒度图像识别与理解。安装要求(Requirements)python3.8及以上版本pytorch2.0及以上版本建议使用C
- 深度学习100问44:如何避免模型出现过拟合现象
不断持续学习ing
人工智能自然语言处理机器学习
嘿,想让你的模型不出现过拟合现象?来看看这些妙招吧!一、增加数据量这就好比让学生多做各种不同的练习题。数据多了,模型就能学到更普遍的规律,而不是只记住那一点点数据里的小细节。你可以去收集更多真实的数据,或者用数据增强的办法。就像在图像识别里,把图片转一转、翻一翻、剪一剪,这样数据就变得更多样啦。二、简化模型要是模型太复杂,那就像盖了一座超级华丽的城堡,容易记住一些不该记的东西。那就把模型弄得简单点
- 闪耀世界人工智能大会背后,AI头雁百度已成智能经济强力引擎
何玺
7月11日,2020世界人工智能大会在上海圆满闭幕。本届大会,多位商界领袖、行业专家针对人工智能发表了自己的观点与见解,并引发人们对AI的思考。腾讯CEO马化腾称:“人工智能本身就是一场跨国跨学科的探索,正在将人类的认知推向更快更高更强,也势必带给我们一场前所未见的科技和产业革命。”。特斯拉CEO马斯克则表示,AI在感知层面的某些专业领域里,已经无人能及。例如,AI的图像识别“天赋”已经超过了地球
- 基于STM32的智能物料运载小车:OpenMV和OpenCV结合图像识别与运动控制算法优化(代码示例)
极客小张
stm32opencv嵌入式硬件系统架构物联网c语言机器人
一、项目概述智能物料运载小车项目旨在开发一款能够自主移动并进行物料搬运的智能设备。该小车通过多种传感器和智能控制算法,实现自动识别和搬运物料,提高物流效率,减少人工成本。项目的核心价值在于:提高效率:通过自动化搬运,减少人力需求,提升工作效率。降低错误率:利用传感器和图像处理技术,确保物料的准确搬运。增加灵活性:全方位移动能力使小车能够在复杂环境中自如穿行。二、系统架构1.系统架构设计本项目的系统
- 深度学习:图像数据分析的革命
2401_85761762
深度学习数据分析人工智能
深度学习:图像数据分析的革命在当今数据驱动的世界中,图像数据分析已成为一个热门领域,而深度学习技术在其中扮演着核心角色。深度学习,特别是卷积神经网络(CNN),已经在图像识别、分类和处理方面取得了显著的成就。本文将详细介绍如何使用深度学习进行图像数据分析,并提供实际的代码示例。深度学习与图像数据分析深度学习是一种机器学习方法,它通过使用多层神经网络来学习数据的复杂模式。在图像数据分析中,深度学习模
- 使用Python实现深度学习模型:智能灾害响应与救援机器人
Echo_Wish
Python算法Python笔记python深度学习机器人
在自然灾害频发的今天,智能灾害响应与救援机器人可以在救援过程中发挥重要作用。本文将详细介绍如何使用Python和深度学习技术实现一个智能灾害响应与救援机器人,帮助你快速入门并掌握基本的开发技能。一、项目概述智能灾害响应与救援机器人的主要功能是通过摄像头实时监控灾区情况,识别受困人员,并提供救援路径规划。我们将使用深度学习模型进行图像识别,并通过Python进行开发。二、项目环境配置在开始项目之前,
- 卷积神经网络-解释1
weixin_33749242
人工智能数据结构与算法
[翻译]神经网络的直观解释2017/07/2717:36这篇文章原地址为AnIntuitiveExplanationofConvolutionalNeuralNetworks,卷积神经网络的讲解非常通俗易懂。什么是卷积神经网络?为什么它们很重要?卷积神经网络(ConvNets或者CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通
- 见过最好的神经网络CNN解释
罗晨晖
卷积神经网络CNN计算机视觉深度学习
什么是卷积神经网络?为什么它们很重要?卷积神经网络(ConvNets或者CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通信号,从而为机器人和自动驾驶汽车提供视力。在上图中,卷积神经网络可以识别场景,也可以提供相关的标签,比如“桥梁”、“火车”和“网球”;而下图展示了卷积神经网络可以用来识别日常物体、人和动物。最近,卷积神经网络
- 基于深度学习的手势识别系统
毕设宇航
深度学习人工智能手势识别
基于深度学习网络的手势识别系统完整源码+数据集+报告+PPT全套信息【python设计开发】基于深度学习的手势图像识别处理系统【包括】代码PPT报告2需求分析2.1要求(1)用Python语言实现程序设计;(2)初识深度学习和图像处理技术;(3)了解深度神经网络(DeepNeuralNetworks,简称DNN)相关知识;(4)【难点】了解LeNet-5卷积神经网络模型,并进行模型训练;(5)【难
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C