1
|
pip install elasticsearch
|
1
2
|
from
elasticsearch
import
Elasticsearch
es
=
Elasticsearch([{
'host'
:
'10.10.13.12'
,
'port'
:
9200
}])
|
1
|
es.search(index
=
'logstash-2015.08.20'
, q
=
'http_status_code:5* AND server_name:"web1"'
, from_
=
'124119'
)
|
1
2
|
In[
52
]: es.count(index
=
'logstash-2015.08.21'
, q
=
'http_status_code:500'
)
Out[
52
]:{u
'_shards'
:{u
'failed'
:
0
, u
'successful'
:
5
, u
'total'
:
5
}, u
'count'
:
17042
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
# Initialize the scroll
page
=
es.search(
index
=
'yourIndex'
,
doc_type
=
'yourType'
,
scroll
=
'2m'
,
search_type
=
'scan'
,
size
=
1000
,
body
=
{
# Your query's body
})
sid
=
page[
'_scroll_id'
]
scroll_size
=
page[
'hits'
][
'total'
]
# Start scrolling
while
(scroll_size >
0
):
print
"Scrolling..."
page
=
es.scroll(scroll_id
=
sid, scroll
=
'2m'
)
# Update the scroll ID
sid
=
page[
'_scroll_id'
]
# Get the number of results that we returned in the last scroll
scroll_size
=
len
(page[
'hits'
][
'hits'
])
print
"scroll size: "
+
str
(scroll_size)
# Do something with the obtained page
|
1
2
3
4
5
6
|
"range"
:{
"money"
:{
"gt"
:
20
,
"lt"
:
40
}
}
|
1
2
3
4
5
6
7
|
{
"bool"
:{
"must"
:[],
"should"
:[],
"must_not"
:[],
}
}
|
1
2
3
4
5
|
{
"terms"
:{
"money"
:
20
}
}
|
1
2
3
4
5
|
{
"terms"
:{
"money"
: [
20
,
30
]
}
}
|
1
2
3
4
5
|
{
"regexp"
: {
"http_status_code"
:
"5.*"
}
}
|
1
2
3
4
5
|
1
2
3
4
5
6
|
{
"multi_match"
:{
"query"
:
"11"
,
"fields"
:[
"Tr"
,
"Tq"
]
}
}
|
1
2
3
4
5
6
7
8
9
|
{
'query'
:
{
'filtered'
:
{
'filter'
:
{
'range'
:
{
'@timestamp'
:{
'gt'
:
'now-1h'
}}
}
}
}
}
|
1
2
3
4
5
6
7
8
|
{
"query"
:{
"filtered"
:{
"query"
:{
"match"
:{
"http_status_code"
:
500
}},
"filter"
:{
"term"
:{
"server_name"
:
"vip03"
}}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
|
{
'facets'
:
{
'stat'
:
{
'terms'
:
{
'field'
:
'http_status_code'
,
'order'
:
'count'
,
'size'
:
50
}
}
},
'size'
:
0
}
|
1
2
3
4
5
6
7
8
9
10
|
{
'facets'
:
{
'cip'
:
{
'terms'
:
{
'fields'
:[
'client_ip'
]}},
'status_facets'
:{
'terms'
:{
'fields'
:[
'http_status_code'
],
'order'
:
'term'
,
'size'
:
50
}}},
'query'
:{
'query_string'
:{
'query'
:
'*'
}},
'size'
:
0
}
|
1
2
3
4
5
6
7
8
9
10
11
12
|
{
'facets'
:
{
'tag'
:
{
'terms'
:
{
'fields'
:[
'http_status_code'
,
'client_ip'
],
'size'
:
10
}
}
},
'query'
:
{
'match_all'
:{}},
'size'
:
0
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
{
"facets"
: {
"0"
: {
"date_histogram"
: {
"field"
:
"@timestamp"
,
"interval"
:
"5m"
},
"facet_filter"
: {
"fquery"
: {
"query"
: {
"filtered"
: {
"query"
: {
"query_string"
: {
"query"
:
"*"
}
},
"filter"
: {
"bool"
: {
"must"
: [
{
"range"
: {
"@timestamp"
: {
'gt'
:
'now-1h'
}
}
},
{
"exists"
: {
"field"
:
"http_status_code.raw"
}
},
# --------------- -------
# 此处加匹配条件
]
}
}
}
}
}
}
}
},
"size"
:
0
}
|
1
2
3
4
5
|
{
"query"
: {
"query_string"
: {
"query"
:
"backend_name:baidu.com"
}
}
},
|