- 【论文阅读方法】沐神课程:如何读论文
晴空对晚照
论文阅读论文阅读
一篇论文的一般结构titleabstractintroductionmethodexperienceconclusion三明治论文阅读法第一遍:海选title+abstract+conclusion——确定要不要读第二遍:精读对整个文章过一遍,知道每一块在做什么可以从标题开始读到最后,注意不用咬文嚼字,不要太细节,公式、证明等很细节的部分可以忽略掉重点弄清楚每一个图表,算法在做什么,x轴y轴每一个
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- LLaMA-Factory 训练数据默认使用 instruction、input、output 三个 key
背太阳的牧羊人
模型微调llama人工智能大模型微调
在LLaMA-Factory进行SFT(Directivesupervisionfine-tuning指令监督微调)时,训练数据的格式非常重要,因为大模型依赖标准化的数据结构来学习指令-响应模式。identity.json文件的数据采用了“instruction”、“input”、“output”这三个key,它们的作用如下:Key作用示例“instruction”代表用户给AI的指令(问题或任务
- 【手撕算法系列】多头自注意力机制MHSA
Nastu_Ho-小何同学
python深度学习机器学习
importtorch.nnasnnclassAttention(nn.Module):def__init__(self,dim,num_heads=8,qkv_bias=False,qk_scale=None,attn_drop=0.,proj_drop=0.,num_classes=20):super().__init__()self.num_classes=num_classesself.n
- NLP复习3,手撕多头attention
地大停车第二帅
NLP学习自然语言处理人工智能
importmathimporttorchimportcollectionsimportnumpyasnpimporttorch.nnasnnclassMultiHeadAttention(nn.Module):def__init__(self,heads,d_model,dropout=0.1):super().__init__()#输入的特征维度self.d_model=d_model#每个头
- llama源码学习·model.py[1]RMSNorm归一化
小杜不吃糖
llamapython
一、model.py中的RMSNorm源码classRMSNorm(torch.nn.Module):def__init__(self,dim:int,eps:float=1e-6):super().__init__()self.eps=epsself.weight=nn.Parameter(torch.ones(dim))def_norm(self,x):returnx*torch.rsqrt(
- IKM 测试题 - Java SE 8 评估测试题目
843294669
java开发语言
关于JavaSE中this()和super()关键字的使用问题:以下哪些陈述正确描述了JavaSE中this()和super()关键字的使用?选项:如果super()没有被编码,则编译器将生成对零参数超类构造函数的调用。this()和super()可以在同一构造函数中使用。如果使用,this()或super()调用必须始终是构造函数中的第一条语句。this()和super()调用可以在构造函数之外
- ARM SVC指令
小米人er
我的博客arm开发
在ARM汇编中,SVC(SupervisorCall)指令用于从用户模式切换到特权模式(如Supervisor模式),以便执行操作系统内核提供的服务。它通常用于系统调用。具体作用触发异常:执行SVC指令时,处理器会进入Supervisor模式,并跳转到异常向量表中的SVC异常处理程序。传递参数:SVC指令后的立即数可作为参数传递给异常处理程序,帮助识别具体的系统调用。语法SVC#是一个24位的立即
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- 设计一个基于flask的高并发高可用的查询ip的http服务
职场亮哥
其他
结构设计基础架构为flask+gunicorn+负载均衡,负载均衡分为阿里云硬件负载均衡服务和软负载nginx。gunicorn使用supervisor进行管理。使用nginx软件负载结构图使用阿里云硬件负载均衡服务结构图因为flaskapp需要在内存中保存ip树以及国家、省份、城市相关的字典,因此占用内存较高。gunicorn的1个worker需要占用300M内存,nginx的4个worker内
- 简单的网页链接爬虫
笑颜218
爬虫python简单
fromurllib.requestimporturlopenfromurllib.parseimporturljoinfromhtml.parserimportHTMLParser#自定义HTML解析器classLinkParser(HTMLParser):def__init__(self,base_url):super().__init__()self.base_url=base_url#基础
- spring event发布及监听实例
weixin_33924220
java测试
序本文主要介绍下如何在spring中进行发布时间以及接收事件定义事件publicclassDemoEventextendsApplicationEvent{privateStringmessage;publicDemoEvent(Objectsource,Stringmessage){super(source);this.message=message;}publicStringgetMessag
- LLM:RMSNorm
微风❤水墨
LLM&AIGC&VLPLLMRMSNorm
importtorchimporttorch.nnasnnclassLayerNorm(nn.Module):def__init__(self,dim:int,eps:float):super(LayerNorm,self).__init__()self.dim=dimself.eps=epsself.weight=nn.Parameter(torch.ones(self.dim))self.bi
- 使用线程池ThreadPoolExecutor调用Callable并接收返回值(用Future接收)
supermiketho
javajavajvm开发语言
/**MyCallableA实现Callable接口**/packagecom.product.supermiketho.threaddemo;importjava.util.concurrent.Callable;publicclassMyCallableAimplementsCallable{@OverridepublicMyVocall()throwsException{Thread.sle
- 在hadoop上运行python_hadoop上运行python程序
廷哥带你小路超车
数据来源:http://www.nber.org/patents/acite75_99.zip首先上传测试数据到hdfs:[root@localhost:/usr/local/hadoop/hadoop-0.19.2]#bin/hadoopfs-ls/user/root/test-inFound5items-rw-r--r--1rootsupergroup1012010-10-2414:39/us
- 论文阅读:Personalized Purchase Prediction of Market with Wasserstein-Based Sequence Matching
Narcissus`小暮
一步步来学大数据推荐系统
PersonalizedPurchasePredictionofMarketwithWasserstein-BasedSequenceMatching概述问题背景及陈述预测算法步骤一:itemembeddings步骤二:计算wassersteinDistance步骤三:Wasserstein-BasedDynamicTimeWarping预测实验评价标准数据集对比的baseline结论市场篮子的应
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 论文阅读 EEG-TCNet
Plan-C-
论文阅读
EEG-TCNet:AnAccurateTemporalConvolutionalNetworkforEmbeddedMotor-ImageryBrain–MachineInterfaces1.Intrduction本文提出了一种新颖的时间卷积网络(TCN),在需要很少的可训练参数的情况下实现了出色的精度。EG-TCNET成功地推广了单个数据集,通过0.25的元效应优于MOABB的当前最新技术水平
- 论文阅读《Semantic Stereo Matching with Pyramid Cost Volumes》
cunese0088
深度学习
SSPCV-Net(语义立体匹配网络)目的:进一步捕捉视差的细节主要模块:数据集:SceneFlow,KITTI2012,KITTI2015,Cityscape(比较泛化能力)-------------------------------------------------------------------------------------------------------Concatevo
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- 【论文阅读】Learning Transferable Visual Models From Natural Language Supervision(2021)
Bosenya12
论文阅读
摘要State-of-the-art(最先进的)computervisionsystems(计算机视觉系统)aretrainedtopredictafixedsetofpredeterminedobjectcategories(被训练来预测一组固定的预定对象类别).Thisrestrictedformofsupervision(受限制的监督形式)limitstheirgenerality(通用性)
- InternVL:论文阅读 -- 多模态大模型(视觉语言模型)
XiaoJ1234567
LLM论文阅读语言模型人工智能多模态大模型internVL
更多内容:XiaoJ的知识星球文章目录InternVL:扩展视觉基础模型与通用视觉语言任务对齐1.概述2.InternVL整体架构1)大型视觉编码器:InternViT-6B2)语言中间件:QLLaMA。3)训练策略(1)第一阶段:视觉-语言对比训练(2)第二阶段:视觉语言生成训练(3)第三阶段:监督微调(SFT)3.InternVL应用1)对于视觉感知任务2)对于对比任务3)对于生成任务4)对于
- 基于pytorch的神经病网络搭建学习
停走的风
pytorch学习学习pytorch人工智能
1.pycharm中code方法的使用1.1父类重写技巧操作:在需要重写的方法上右键,选择code-->Generate>OverrideMethods。作用:自动生成重写父类或接口的方法2.简单神经网络importtorchfromtorchimportnnclassyu(nn.Module):def__init__(self,*args,**kwargs)->None:super().__in
- 电力行业中的SCADA系统(Supervisory Control and Data Acquisition,监控与数据采集系统)
小赖同学啊
人工智能智能硬件网络服务器运维
在电力行业中,SCADA系统(SupervisoryControlandDataAcquisition,监控与数据采集系统)是核心的自动化控制系统,用于实时监测、控制和优化电力系统的运行。SCADA系统通过集成数据采集、通信、监控和控制功能,帮助电力公司实现电网的高效管理和故障快速响应。以下是SCADA系统在电力行业中的关键功能、组成和应用:SCADA系统的核心功能实时数据采集:从电力设备(如变压
- django allauth 自定义登录界面
waterHBO
djangopythondjango数据库sqlitepython笔记经验分享
起因,目的:为什么前几天还在写强化学习,今天又写django,问就是:客户需求>个人兴趣。问题来源:allauth默认的登录界面不好看,这里记录几个问题。1.注册页面SignUp这里增加,手机号,邮编等等。2.使用谷歌来登录这个步骤其实也简单。xxxxxxxx一定要修改关键的信息,不能随便暴露给别人。xxxxxxxx#HowtouseGoogleLogin.1.createsuperuser.(m
- Win7 火狐浏览器 Mozilla Firefox 115.7.0esr下载地址(及Chrome、Supermium浏览器)
catoop
其他firefox
如题,官网下载地址:MozillaFirefox115.7.0esr已经发布,感兴趣的朋友可去官方下载!https://ftp.mozilla.org/pub/firefox/releases/115.7.0esr/其他方案:1、谷歌Chrome浏览器的109版本,即最后一个支持Win7的官方版本。2、Supermium浏览器。它是一款专门为老旧操作系统而优化的浏览器,使用了最新版本Chromiu
- 运维:Centos8安装supervisor守护Nginx进程笔记
IT技术分享社区
Docker系列服务器linuxwindows运维
目录supervisor介绍1.1简介1.2工作原理1.3运行环境1.4supervisor组成2、安装配置步骤2.1执行安装命令2.2回车继续2.3启动supervisor服务2.4查看配置文件,并修改配置文件2.5创建守护nginx进程配置文件nginx.ini2.6添加配置文件后重启2.7停止掉自己服务器运行的nginx,使用Supervisor进行管理supervisor介绍1.1简介Su
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- 论文阅读-秦汉时期北方边疆组织的空间互动模式与直道的定位(中国)
MilkLeong
论文阅读空间计算
论文英文题目:AspatialinteractionmodelofQin-HanDynastyorganisationonthenorthernfrontierandthelocationoftheZhidaohighway(China)发表于:journalofarchaeologicalscience,影响因子:3.030论文主要是使用空间互动模型来对秦汉时期的北方边疆直道进行定位和重建。分析
- I-JEPA:联合嵌入预测架构的自监督学习实现
平奇群Derek
I-JEPA:联合嵌入预测架构的自监督学习实现I-JEPAImplementationofI-JEPAfrom"Self-SupervisedLearningfromImageswithaJoint-EmbeddingPredictiveArchitecture"项目地址:https://gitcode.com/gh_mirrors/ij/I-JEPA项目介绍欢迎来到I-JEPA,这是一个基于Se
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟