- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- win11编译pytorch cuda128版本流程
System_sleep
pytorch人工智能python编译windowscuda
Geforce50xx系显卡最低支持cuda128,torchcu128release版本目前还没有释放,所以自己基于2.6.0源码自己编译wheel包。1.前置条件1.使用visualstudioinstaller安装visualstudio2022,工作负荷选择【使用c++的桌面开发】,安装完成后将“VC\Tools\MSVC\\bin\Hostx64\x64”对应的路径加入环境变量;2.访问
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- Python深度学习之路:TensorFlow与PyTorch对比
步入烟尘
Python超入门指南全册python深度学习tensorflow
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- 图像识别技术与应用课后总结(14)
一元钱面包
人工智能
训练模型加载预处理数据集:可以借助PyTorch的数据处理工具,如torch.utils和torchvision等定义损失函数:既可以自定义,也能使用PyTorch内置的,像回归任务常用nn.MSELoss(),分类任务常用nn.BCELoss()定义优化方法:PyTorch的优化方法封装在torch.optim中,基于基类optim.Optimizer,能实现自定义优化步骤。常用的优化算法如梯度
- Python深度学习实践:神经网络在异常检测中的应用
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
Python深度学习实践:神经网络在异常检测中的应用关键词:深度学习,神经网络,异常检测,Python,TensorFlow,PyTorch,模型优化,实战案例摘要:本文深入探讨了深度学习在异常检测领域的应用。通过Python实现的神经网络,本文介绍了深度学习的基本概念、核心算法、模型优化方法,并提供了详细的实战案例,包括数据预处理、模型训练和评估。读者将了解如何使用深度学习技术检测金融欺诈、网络
- Transformer 代码剖析15 - Transformer模型代码 (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习embedding人工智能python
一、模型架构全景解析1.1类定义与继承关系classTransformer(nn.Module):该实现继承PyTorch的nn.Module基类,采用面向对象设计模式。核心架构包含编码器-解码器双塔结构,通过参数配置实现NLP任务的通用处理能力。TransformerEncoderDecoderMulti-HeadAttentionFeedForwardMaskedMulti-HeadAtten
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- PyTorch 与 NVIDIA GPU 的适配版本及安装
小赖同学啊
人工智能pytorch人工智能python
PyTorch与NVIDIAGPU的适配版本需要通过CUDA和cuDNN来实现。以下是详细的安装教程,包括如何选择合适的PyTorch版本以及如何配置NVIDIAGPU环境。1.检查NVIDIAGPU和驱动1.1检查GPU型号确保你的机器上有NVIDIAGPU,并知道其型号。可以通过以下命令检查:nvidia-smi输出示例:+-----------------------------------
- C++使用Onnxruntime/TensorRT模型推理
奇华智能
AIc++开发语言人工智能AI计算机视觉
onnxruntime和tensorrt是我们常用的两种推理方式,下面整理了两个推理示例,仅供参考。步骤流程模型训练,python下生成pytorch的模型.pth,并基于.pth模型进行推理python下依据模型推理实现从.pth转向.onnxpython下基于.onnx进行推理,与后续两种推理方式种的推理结果进行比较环境windows10+RTX308015GB显存cuda11.3onnxru
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- Python | Pytorch | Tensor知识点总结
漂亮_大男孩
Python拾遗pythonpytorch深度学习人工智能
如是我闻:Tensor是我们接触Pytorch了解到的第一个概念,这里是一个关于PyTorchTensor主题的知识点总结,涵盖了Tensor的基本概念、创建方式、运算操作、梯度计算和GPU加速等内容。1.Tensor基本概念Tensor是PyTorch的核心数据结构,类似于NumPy的ndarray,但支持GPU加速和自动求导。PyTorch的Tensor具有动态计算图,可用于深度学习模型的前向
- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- pytorch 模型测试
小赖同学啊
人工智能pytorch人工智能python
在使用PyTorch进行模型测试时,一般包含加载测试数据、加载训练好的模型、进行推理以及评估模型性能等步骤。以下为你详细介绍每个步骤及对应的代码示例。1.导入必要的库importtorchimporttorch.nnasnnimporttorchvisionimporttorchvision.transformsastransforms2.加载测试数据假设我们使用的是CIFAR-10数据集作为示例
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- NCU使用指南及模型性能测试(pytorch2.5.1)
Jakari
cudagpuncupythondocker深度学习pytorch
本项目在原项目的基础上增加了NsightCompute(ncu)测试的功能,并对相关脚本功能做了一些健硕性的增强,同时,对一些框架的代码进行了更改(主要是数据集的大小和epoch等),增加模型性能测试的效率,同时完善了模型LSTM的有关功能。OverviewNsightCompute(NCU)是NVIDIA提供的GPU内核级性能分析工具,专注于CUDA程序的优化。它提供详细的计算资源、内存带宽、指
- 基于PyTorch的深度学习2——Numpy与Tensor
Wis4e
深度学习pytorchnumpy
Tensor自称为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便和高效。不过它们也有不同之处,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。1.创建创建Tensor的方法有很多,可以从列表或ndarray等类型进行构建,也可根据指定的形状构建。importtorch#根据list数
- 图像识别技术与应用课后总结(12)
一元钱面包
人工智能
全局平均池化(GlobalAveragePooling)1.导入库和设备配置importtorch.nnasnnimporttorch.nn.functionalasFdevice=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")-importtorch.nnasnn:导入PyTorch的神经网络模块,用于构建神经网络层。-imp
- PyTorch RuntimeError: 张量 a 的大小必须与张量 b 的大小在非单例维度上匹配
PzBlockchain
pytorch人工智能python机器学习-深度学习
在使用PyTorch进行深度学习模型开发时,经常会遇到各种错误和异常。其中一个常见的错误是RuntimeError。这篇文章将详细介绍其中一个特定的RuntimeError,即“Thesizeoftensoramustmatchthesizeoftensorbatnon-singletondimension”错误。我们将讨论这个错误的原因,并提供一些解决方案。错误信息解读:错误信息“Thesize
- 私有部署 ChatGLM3-6B
张申傲
langchain人工智能aigcchatgptai
1.在AutoDL平台上租赁GPUGPU型号:RTX4090PyTorch版本:2.5.1**(推荐使用2.0及以上的版本,以获得最佳的推理性能)**2.开启学术资源加速source/etc/network_turbo3.拉取模型代码gitclonehttps://github.com/THUDM/ChatGLM34.安装依赖cdChatGLM3pipinstall-rrequirements.t
- 深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
@Mr_LiuYang
计算机视觉基础归一化正则化NormlizationBatchNormLayerNormInstanceNromGroupNorm
深度学习pytorch之22种损失函数数学公式和代码定义深度学习pytorch之19种优化算法(optimizer)解析深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用摘要归一化(Normalization)是提升模型性能、加速训练的重要技巧。归一化方法可以帮助减少梯度消失或爆炸的问题,提升模型的收敛速度,且对最终模型的性能有显著影响。本文将以PyTorc
- PyTorch Lightning 的简单使用示例
idealmu
pytorch人工智能python
1.环境准备与依赖导入首先,代码需要导入了实现模型、数据处理和训练所需的各个包:importtorchfromtorchimportnnfromtorch.utils.dataimportDataLoader,random_splitfromtorchvision.datasetsimportMNISTfromtorchvision.transformsimportToTensorimportpy
- Torch-MLIR 项目使用教程
穆声淼Germaine
Torch-MLIR项目使用教程torch-mlirTheTorch-MLIRprojectaimstoprovidefirstclasssupportfromthePyTorchecosystemtotheMLIRecosystem.项目地址:https://gitcode.com/gh_mirrors/to/torch-mlir1.项目目录结构及介绍Torch-MLIR项目的目录结构遵循典型的
- 2024 最新计算机视觉学习路线(入门篇)_计算机视觉课程主线
m0_60721823
计算机视觉学习人工智能
Python是机器学习项目中最流行的编程语言之一,因为与Java和C++等其他编程语言相比,它简单易读。Python附带了许多可以加快开发速度的库,其中一些重要的库是OpenCV、TensorFlow、PyTorch等,它们专门用于图像处理相关任务。本文旨在向初学者介绍这一领域,为他们提供有关涉及图像的机器学习应用程序背后概念的基本知识,并从高层次的角度深入了解这些库如何在底层协同工作,以便他们在
- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- PyTorch数据加载:实战入门
秋.
pytorch人工智能python数据加载
"好的数据加载是成功训练的第一步"一、为什么要用DataLoader?当我们刚开始学习深度学习时,常常会这样处理数据:#传统方式加载数据images=[...]#所有图片数据labels=[...]#所有标签foriinrange(0,len(images),32):batch_images=images[i:i+32]batch_labels=labels[i:i+32]#训练代码...这种方式
- 大模型国产化迁移大模型到昇腾教程(Pytorch版)
科技互联人生
科技数码人工智能AIGC语言模型
大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)随着ChatGPT的火爆,AI大模型时代来临,但算力紧张。中美贸易战及美国制裁AI芯片,国产化势在必行。已有国产AI芯片和Mindformers框架,基于昇腾910训练大模型,使用MindIE实现大模型服务化。本文介绍如何迅速将大型模型迁移到昇腾910B,许多入门者都是从斯坦福羊驼开始的。我们将利用羊驼的训练代码和数据
- 大模型微调入门(Transformers + Pytorch)
昵称不能为null
pythonllm机器学习人工智能
目标输入:你是谁?输出:我们预训练的名字。训练为了性能好下载小参数模型,普通机器都能运行。下载模型#方式1:使用魔搭社区SDK下载#down_deepseek.pyfrommodelscopeimportsnapshot_downloadmodel_dir=snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B')#方式2:gitl
- 计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)
emmm形成中
深度学习人工智能python计算机视觉
计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)摘要:本文为零基础读者系统讲解目标检测核心原理,基于YOLOv8实现工业缺陷检测实战项目。从数据标注到模型部署,包含环境配置、数据增强、模型训练全流程详解,手把手教你打造高精度智能质检系统!关键词:YOLOv8、目标检测、工业质检、缺陷识别、PyTorch一、为什么选择YOLOv8做工业质检?1.1工业质检的三大痛点人工成本高:传
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比