l 主机操作系统:Windows 64 bit,双核4线程,主频2.2G,6G内存
l 虚拟软件:VMware® Workstation 9.0.0 build-812388
l 虚拟机操作系统:CentOS 64位,单核,1G内存
l JDK:1.7.0_55 64 bit
l Hadoop:1.1.2
集群包含三个节点:1个namenode、2个datanode,其中节点之间可以相互ping通。节点IP地址和主机名分布如下:
序号 |
IP地址 |
机器名 |
类型 |
用户名 |
运行进程 |
1 |
10.88.147.221 |
hadoop1 |
名称节点 |
hadoop |
NN、SNN、JobTracer |
2 |
10.88.147.222 |
hadoop2 |
数据节点 |
hadoop |
DN、TaskTracer |
3 |
10.88.147.223 |
hadoop3 |
数据节点 |
hadoop |
DN、TaskTracer |
所有节点均是CentOS6.5 64bit系统,防火墙均禁用,所有节点上均创建了一个hadoop用户,用户主目录是/usr/hadoop。所有节点上均创建了一个目录/usr/local/hadoop,并且拥有者是hadoop用户。
Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。AMahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到云中。
在Apache下载最新的Mahout软件包,点击下载会推荐最快的镜像站点,以下为下载地址:http://archive.apache.org/dist/mahout/0.6/
把下载的mahout-distribution-0.6.tar.gz安装包,使用SSH Secure File Transfer工具(第1、2作业周2.1.3.1介绍)上传到/home/hadoop/Downloads目录下
在Downloads目中将mahout解压缩
cd /home/hadoop/Downloads/
tar -xzf mahout-distribution-0.6.tar.gz
把mahout-distribution-0.6目录移到/usr/local目录下
sudo mv mahout-distribution-0.6 /usr/local/mahout-0.6
cd /usr/local
ls
使用如下命令编辑/etc/profile文件:
sudo vi /etc/profile
声明mahout的home路径和在path加入bin的路径:
export MAHOUT_HOME=/usr/local/mahout-0.6
export MAHOUT_CONF_DIR=/usr/local/mahout-0.6/conf
export PATH=$PATH:$MAHOUT_HOME/bin
编译配置文件/etc/profile,并确认生效
source /etc/profile
重新登录终端,确保hadoop集群启动,键入mahout --help命令,检查Mahout是否安装完好,看是否列出了一些算法:
mahout --help
下载一个文件synthetic_control.data,下载地址http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data,并把这个文件放在$MAHOUT_HOME目录下
cd /home/hadoop/Downloads/
mv synthetic_control.data /usr/local/mahout-0.6/
mkdir testdata
cp synthetic_control.data testdata/
ls
./start-all.sh
使用如下命令进行kmeans算法测试:
mahout org.apache.mahout.clustering.syntheticcontrol.kmeans.Job
结果会在根目录建立output新文件夹,如果下图结果表示mahout安装正确且运行正常:
cd output
ls
安装Mahout,并运行20newsgroup的测试样例,抓图说明实验过程
朴素贝叶斯分类是一种十分简单的分类算法,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率哪个最大,就认为此待分类项属于哪个类别。
这二十个新闻组数据集合是收集大约20,000新闻组文档,均匀的分布在20个不同的集合。这20个新闻组集合采集最近流行的数据集合到文本程序中作为实验,根据机器学习技术。例如文本分类,文本聚集。我们将使用Mahout的Bayes Classifier创造一个模型,它将一个新文档分类到这20个新闻组集合范例演示
下载20Newsgroups数据集,地址为 http://qwone.com/~jason/20Newsgroups/ ,下载20news-bydate.tar.gz数据包
把下载的20news-bydate.tar.gz数据包,使用SSH Secure File Transfer工具(第1、2作业周2.1.3.1介绍)上传到/home/hadoop/Downloads 目录下:
解压20news-bydate.tar.gz数据包,解压后可以看到两个文件夹,分别为训练原始数据和测试原始数据:
cd /home/hadoop/Downloads/
tar -xzf 20news-bydate.tar.gz
在mahout根目录下建data文件夹,然后把20news训练原始数据和测试原始数据迁移到该文件夹下:
mkdir /usr/local/mahout-0.6/data
mv 20news-bydate-t* /usr/local/mahout-0.6/data
ls /usr/local/mahout-0.6/data
通过如下命令建立训练集,训练的数据在20news-bydate-train目录中,输出的训练集目录为 bayes-train-input:
mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
-p /usr/local/mahout-0.6/data/20news-bydate-train \
-o /usr/local/mahout-0.6/data/bayes-train-input \
-a org.apache.mahout.vectorizer.DefaultAnalyzer \
-c UTF-8
通过如下命令建立训练集,训练的数据在20news-bydate-test目录中,输出的训练集目录为 bayes-test-input:
mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
-p /usr/local/mahout-0.6/data/20news-bydate-test \
-o /usr/local/mahout-0.6/data/bayes-test-input \
-a org.apache.mahout.vectorizer.DefaultAnalyzer \
-c UTF-8
在HDFS中新建./20news文件夹,把生成的训练集和测试集上传到HDFS的./20news目录中:
hadoop fs -mkdir ./20news
hadoop fs -put /usr/local/mahout-0.6/data/bayes-train-input ./20news
hadoop fs -put /usr/local/mahout-0.6/data/bayes-test-input ./20news
hadoop fs -ls ./20news
hadoop fs -ls ./ 20news/bayes-test-input
使用trainclassifier类训练在HDFS中./20news/bayes-train-input的数据,生成的模型放到./ 20news/newsmodel 目录中:
mahout trainclassifier \
-i /user/hadoop/20news/bayes-train-input \
-o /user/hadoop/20news/newsmodel \
-type cbayes
-ng2 \
-source hdfs
在训练过程中在JobTracker页面观察运行情况,链接地址为http://hadoop1:50030/jobtracker.jsp,训练任务四个作业,大概运行了15分钟左右:
点击查看具体作业信息
map运行情况
作业运行情况
通过如下命令查看模型内容:
hadoop fs -ls ./20news
hadoop fs -ls ./20news/newsmodel
hadoop fs -ls ./20news/newsmodel/trainer-tfIdf
使用testclassifier类训练在HDFS中./20news/bayestest-input的数据,使用的模型路径为./ 20news/newsmodel:
mahout testclassifier \
-m /user/hadoop/20news/newsmodel \
-d /user/hadoop/20news/bayes-test-input \
-type cbayes
-ng2 \
-source hdfs\
-method mapreduce
在执行过程中在JobTracker页面观察运行情况,链接地址为http://hadoop1:50030/jobtracker.jsp,训练任务1个作业,大概运行了5分钟左右:
作业的基本信息
map运行情况
reduce运行情况
这个混合矩阵的意思说明:上述a到u分别是代表了有20类别,这就是我们之前给的20个输入文件,列中的数据说明每个类别中被分配到的字节个数,classified说明应该被分配到的总数
381 0 0 0 0 9 1 0 0 0 1 0 0 2 0 1 0 0 3 0 0 | 398 a = rec.motorcycles
意思为rec.motorcycles 本来是属于 a,有381篇文档被划为了a类,这个是正确的数据,其它的分别表示划到 b~u类中的数目。我们可以看到其正确率为381/398=0.9573 ,可见其正确率还是很高的了。
在0.7版本的安装目录下$MAHOUT_HOME/examples/bin下有个脚本文件classifu-20newsgroups.sh,这个脚本中执行过程是和前面分布执行结果是一致的,只不过将各个API用shell脚本封装到一起了。从0.7版本开始,Mahout移除了命令行调用的API:prepare20newsgroups、trainclassifier和testclassifier,只能通过shell脚本执行。
执行 $MAHOUT_HOME/examples/bin/classify-20newsgroups.sh 四个选项中选择第一个选项,
使用如下命令对20Newsgroupt数据建立训练集时:
mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
-p /usr/local/mahout-0.9/data/20news-bydate-train \
-o /usr/local/mahout-0.9/data/bayes-train-input \
-a org.apache.mahout.vectorizer.DefaultAnalyzer\
-c UTF-8
出现如下错误,原因在于从0.7版本开始,Mahout移除了命令行调用的prepare20newsgroups、trainclassifier和testclassifier API,只能通过shell脚本执行$MAHOUT_HOME/examples/bin/classify-20newsgroups.sh进行
14/12/7 21:31:35 WARN driver.MahoutDriver: Unable to add class: org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups
14/12/7 21:31:35 WARN driver.MahoutDriver: No org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups.props found on classpath, will use command-line arguments only
Unknown program 'org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups' chosen.
Valid program names are:
arff.vector: : Generate Vectors from an ARFF file or directory
baumwelch: : Baum-Welch algorithm for unsupervised HMM training
.......
调用shell脚本执行参见3.4