- 学英语学Elasticsearch:04 Elastic integrations 工具箱实现对第三方数据源的采集、存储、可视化,开箱即用
学会了没
elasticsearch大数据搜索引擎ElasticAgentLogstash与第三方集成
:先看关键单词,再看英文,最后看中文总结,再回头看一遍英文原文,效果更佳!!关键词ingestion摄取/ɪnˈdʒɛstʃən/observability可观察性/ˌɑːbzərvəˈbɪlɪti/scalability可扩展性/ˌskeɪləˈbɪlɪti/deployment部署/dɪˈplɔɪmənt/functionality功能/ˌfʌŋkʃəˈnæləti/pre-packaged预
- svg图片兼容性和用法优缺点
独行侠_ef93
svg图片的使用方法第一次来认认真真的研究了下svg图片,之前只是在网上见过,但都是一晃而过也没当回事,最近网站改版看到同事有用到svg格式的图片,想想自己干了几年的重构也没用过,这些细节的知识是应该好好研究研究了。暂时还没研究得完全透切,先记下目前为止所看到的吧不然又给忘了。svg可缩放矢量图形(ScalableVectorGraphics),顾名思义就是任意改变其大小也不会变形,是基于可扩展标
- Kafka详细解析与应用分析
芊言芊语
kafka分布式
Kafka是一个开源的分布式事件流平台(EventStreamingPlatform),由LinkedIn公司最初采用Scala语言开发,并基于ZooKeeper协调管理。如今,Kafka已经被Apache基金会纳入其项目体系,广泛应用于大数据实时处理领域。Kafka凭借其高吞吐量、持久化、分布式和可靠性的特点,成为构建实时流数据管道和流处理应用程序的重要工具。Kafka架构Kafka的架构主要由
- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 车载以太网之SOME/IP
IT_码农
车载以太网车载以太网SOME/IP
整体介绍SOME/IP(全称为:Scalableservice-OrientedMiddlewarEoverIP),是运行在车载以太网协议栈基础之上的中间件,或者也可以称为应用层软件。发展历程AUTOSAR4.0-完成宝马SOME/IP消息的初步集成;AUTOSAR4.1-支持SOME/IP-SD及其发布/订阅功能;AUTOSAR4.2-添加transformer用于序列化以及其他相关优化;AUT
- Scala学习之旅-对Option友好的flatMap
喝冰咖啡
scala学习
聊点什么OptionflatMapvs.OptionOption的作用在Java/Scala中,Optional/Option(本文还是以scala代码为例)是用来表示某个对象存在或者不存在,也就是说,Option是某个类型T的Wrapper,如果T!=null,Option(T).isDefined==true如果T==null,Option(T).isEmpty==true有了Option这层
- 编程常用命令总结
Yellow0523
LinuxBigData大数据
编程命令大全1.软件环境变量的配置JavaScalaSparkHadoopHive2.大数据软件常用命令Spark基本命令Spark-SQL命令Hive命令HDFS命令YARN命令Zookeeper命令kafka命令Hibench命令MySQL命令3.Linux常用命令Git命令conda命令pip命令查看Linux系统的详细信息查看Linux系统架构(X86还是ARM,两种方法都可)端口号命令L
- 区块链的可伸缩性以及面临的挑战
Mindfulness code
区块链开发区块链
1.可伸缩性在过去的几年中,可伸缩性(Scalability,也称为可扩展性)问题一直是激烈辩论、严格研究和媒体关注的焦点。这是一个至关重要的问题,因为它可能意味着区块链不适于广泛应用,而仅限于联盟许可的私有网络。在经过对该领域的大量研究之后,人们提出了许多解决方案,下面将详细介绍这些解决方案。从理论上讲,解决可伸缩性问题的一般方法通常围绕协议级别的强化。例如,通常提到的比特比可伸缩性解决方案是增
- Scala教程之:静态类型
flydean程序那些事
Scala是静态类型的,它拥有一个强大的类型系统,静态地强制以安全、一致的方式使用抽象,我们通过下面几个特征来一一说明:泛类型型变类型上界类型下界内部类抽象类型复合类型自类型隐式参数隐式转换多态方法类型推断通过这些特性,为安全可重用的编程抽象以及类型安全的扩展提供了强大的基础。泛类型和java一样,Scala也有泛型的概念,在scala里面泛型是使用方括号[]来接受类型参数的。通常使用字母A来作为
- Pytorch深度学习- Tensorboard的使用以及图像变换transform的使用(小土堆)
Mr chenxizhi
深度学习人工智能python
Tensorboard中的SummaryWriter使用导入数据包fromtorch.utils.tensorboardimportSummaryWriter构造函数方法#那么生成的数据文件都存在于logs文件夹下writer=SummaryWriter("logs")add_scalar代码示例'''tag:数据标题global_step:x轴数据scalar_value:y轴数据'''#运行结
- 动手学深度学习(pytorch土堆)-02TensorBoard的使用
#include<菜鸡>
深度学习深度学习pytorch人工智能
1.可视化代码使用了torch.utils.tensorboard将数据记录到TensorBoard以便可视化。具体来说,它将标量数据记录到目录logs中,使用的是SummaryWriter类。代码分解如下:SummaryWriter("logs"):初始化一个TensorBoard的写入器,日志会保存到"logs"目录。writer.add_scalar("y=x",i,i):在循环的每一次迭代
- 【OpenCV】官方文档学习,库的命名冲突处理办法【声明命名空间】
深耕AI
opencv学习人工智能
原文:SomeofthecurrentorfutureOpenCVexternalnamesmayconflictwithSTLorotherlibraries.Inthiscase,useexplicitnamespacespecifierstoresolvethenameconflicts:Mata(100,100,CV_32F);randu(a,Scalar::all(1),Scalar::
- 【鼠鼠学AI代码合集#5】线性代数
鼠鼠龙年发大财
鼠鼠学AI系列代码合集人工智能线性代数机器学习
在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。标量(Scalar)的基本操作标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的Python代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。代码实现:importtorch#定义两个标量x=torch.tensor(3.0)#标量x,值为3
- 【Pytorch】cumsum的实现逻辑
栏杆拍遍看吴钩
pytorchpytorch人工智能python
本文只记录cumsum的实现逻辑的CUDA部分,也即底层调用了CUDA的什么实现算子。voidlaunch_cumsum_cuda_kernel(constTensorBase&result,constTensorBase&self,int64_tdim){AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(ScalarType::Half,ScalarType::BFl
- CloudCompare操作(某一指定要素按照PointSourceID分类)
喵喵不爱吃鱼
工具使用
CloudCompare操作(指定强度值点云按照PointSourceID分类)以实标线为例:强度值31、首先将点云按照Intensity显示Properties->Active:IntensityCurrent:Blue->Green…2、截取实标线菜单栏:Edit->Scalarfields->FilterByValue:3-43、截取的实标线点云按照PointSourceID显示,再使用Po
- 【MySQL】深圳大学数据库实验二
看未来捏
深大数据库数据库mysql
目录一、实验目的二、实验要求三、实验设备四、建议的实验步骤4.1EXERCISES5GROUPBY&HAVINGGROUPBY的用法HAVING的用法综合示例小结4.2EXERCISES6SUBQUERIES.1.标量子查询(ScalarSubquery)2.行子查询(RowSubquery)3.表子查询(TableSubquery)4.相关子查询(CorrelatedSubquery)5.非相关
- 2024年大数据高频面试题(下篇)
猿与禅
Java架构师面试大数据面试scala即席查询分桶调度系统数据倾斜
文章目录Scala数据类型函数式编程闭包函数柯里化面向对象样例类对象与伴生对象特质(trait)模式匹配隐式转换即席查询KylinKylin特点Kylin工作原理核心算法Kylin总结Kylin的优点什么场景用KylinKylin的缺点Impala什么是ImpalaImpala为什么快FrontendBackendImpala总结:Presto什么是PrestoPresto的执行过程Presto总
- PyFlink自定义函数
吉小雨
pyflinkflink
在PyFlink(ApacheFlink的PythonAPI)中,自定义函数分为三种主要类型:ScalarFunction(标量函数)、TableFunction(表函数)和AggregateFunction(聚合函数)。这些自定义函数可以在Flink的SQL和TableAPI中使用,用于扩展PyFlink的内置功能,处理自定义的计算逻辑。1.安装PyFlink在开始之前,确保你的环境中已安装了P
- 训练过程可视化tensorboard和wandb及np.array和tensor互相转换
小裴(碎碎念版)
python
tensorboardfromtensorboardXimportSummaryWriter#设置保存日志文件路径logger_path=os.path.join(path,current_time)logger=SummaryWriter(log_dir=logger_path,comment=comment)#要保存的数据logger.add_scalar("value_loss",value
- Hexagon_DSP_User_Guide(2)
weixin_38498942
tools简介dsp开发开发语言tool
Hexagon_DSP_User_Guide(2)4.2Guidelinesforassemblyandintrinsicoptimization4.2.1Maximizeinstructionsperpacket4.2.1.1Scalarinstructionpackingrules4.2.1.2HVXpackingrules4.2.2Understandandreducestalls4.2.2
- 多种model serving 的调研比较
Helen_Cat
image.pnggithubofficesite框架语言依赖项服务端开发语言客户端调用语言是否支持restful支持算法是否支持hdfs大规模是否支持同时部署多个模型服务是否支持模型切换是否支持模型跟踪是否支持pmmlpredictioniohttps://github.com/apache/predictioniohttp://predictionio.apache.orgscalamysql
- SparkStreaming业务逻辑处理的一些高级算子
看见我的小熊没
sparkStreamingscalasparkbigdatascala
1、reduceByKey reduceByKey是按key进行计算,操作的数据是每个批次内的数据(一个采集周期),不能跨批次计算。如果需要实现对历史数据的跨批次统计累加,则需要使用updateStateByKey算子或者mapWithState算子。packagecom.sparkscala.streamingimportorg.apache.log4j.{Level,Logger}impor
- ARM SIMD instruction -- fcmpe
xiaozhiwise
Assembly汇编
FCMPEFloating-pointsignalingCompare(scalar).ThisinstructioncomparesthetwoSIMD&FPsourceregistervalues,orthefirstSIMD&FPsourceregistervalueandzero.ItwritestheresulttothePSTATE.{N,Z,C,V}flags.浮点数比较(标量)。此
- Windows系统下的Spark环境配置
eeee~~
3:大数据技术实用教程spark大数据分布式
一:Spark的介绍ApacheSpark是一个开源的分布式大数据处理引擎,它提供了一整套开发API,包括流计算和机器学习。Spark支持批处理和流处理,其显著特点是能够在内存中进行迭代计算,从而加快数据处理速度。尽管Spark是用Scala开发的,但它也为Java、Scala、Python和R等高级编程语言提供了开发接口。Spark提供了多个核心组件,包括:SparkCore:提供内存计算的能力
- Redis概述
AC编程
一、为什么需要NoSQLHighperformance高并发读写HugeStorage海量数据的高效率存储和访问HighScalability&&HighAvailability高可拓展性和高可用性二、NoSQL数据库的四大分类键值(Key-Value)存储列存储文档数据库图形数据库三、四类NoSQL数据库比较键值(Key-Value)存储相关产品:Redis、Voldemort、TokyoCab
- EMR组件部署指南
ivwdcwso
运维EMR大数据开源运维
EMR(ElasticMapReduce)是一个大数据处理和分析平台,包含了多个开源组件。本文将详细介绍如何部署EMR的主要组件,包括:JDK1.8ElasticsearchKafkaFlinkZookeeperHBaseHadoopPhoenixScalaSparkHive准备工作所有操作都在/data目录下进行。首先安装JDK1.8:yuminstalljava-1.8.0-openjdk部署
- 演示Scalalazy变量的惰性求值
悻运
scala
惰性求值:在用到的时候才对表达式进行求值,而不是在定义时立即求值,并且变量只有在首次访问时才会进行初始化,之后再次访问时会使用已经计算好的值以下是演示Scala的lazy变量惰性求值的步骤:1:定义一个lazy变量。在Scala中,可以使用lazy关键字来声明一个lazy变量。例如,我们可以定义一个名为x的lazy变量:lazyvalx={//初始化代码块...}2:访问lazy变量。当我们第一次
- kafka集群搭建
java皮皮虫
kafkaspringboot后台kafkakafka测试kafka集群
Kafka集群搭建一、概念说明它是一个分布式消息系统,由linkedin使用scala编写,用作LinkedIn的活动流(ActivityStream)和运营数据处理管道(Pipeline)的基础。具有高水平扩展和高吞吐量。比较定义解释:1、Java和scala都是运行在JVM上的语言。2、erlang和最近比较火的和go语言一样是从代码级别就支持高并发的一种语言,所以RabbitMQ天生就有很高
- 介绍一下SOME/IP 的Session handing功能
aFakeProgramer
SOME/IP精华学习笔记网络协议
SOME/IP(Scalableservice-OrientedMiddlewarEoverIP)协议中的会话处理功能(SessionHandling)是确保消息传递可靠性和顺序的重要机制。以下是其主要功能:1.会话ID(SessionID):每个会话都有一个唯一的会话ID,用于标识和跟踪消息。所有属于同一会话的消息都共享相同的会话ID³。2.消息分段:对于需要分段传输的大消息,SOME/IP使用
- 429. N-ary Tree Level Order Traversal. Python/Scala
电饭锅娃儿
环境:python3.6,scala2.11.8题意N叉树的层次遍历,题意比较清晰,具体可戳此。分析虽然是N叉树遍历,仍可参考二叉树的先序、中序及后序遍历。三种方法都使用递归和栈来完成二叉树的遍历,不同的是N叉树要求返回的结果为二维列表,反映节点间的层级关系。递归基于二叉树的通用递归写法,先来看看遍历N叉树的递归起手式:defdfs(node):ifnode:#符合某些条件后,添加至结果列表。类似
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep