参考:
https://es.xiaoleilu.com/052_Mapping_Analysis/00_Intro.html
映射(mapping)机制用于进行字段类型确认,将每个字段匹配为一种确定的数据类型(string, number, booleans, date等)。
分析(analysis)机制用于进行全文文本(Full Text)的分词,以建立供搜索用的反向索引。
GET /gb/_mapping
返回:
{
"gb" : {
"mappings" : {
"properties" : {
"date" : {
"type" : "date"
},
"email" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"tweet" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"user_id" : {
"type" : "long"
},
"username" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
查询:
GET /gb/_search?q=2019 # 返回空
GET /gb/_search?q=2019-12-12 # 返回3个结果
GET /gb/_search?q=date:2019-12-12 # 返回3个结果
GET /gb/_search?q=date:2019 # 返回空
可以,是因为date被es推测为date类型,而_all里是string类型,只会完整匹配2019-12-12。
确切值 及 全文文本:
确切值是确定的,正如它的名字一样。比如一个date或用户ID,也可以包含更多的字符串比如username或email地址。
确切值"Foo"和"foo"就并不相同。确切值2014和2014-09-15也不相同。
全文文本,从另一个角度来说是文本化的数据(常常以人类的语言书写),比如一篇推文(Twitter的文章)或邮件正文。
全文文本常常被称为非结构化数据,其实是一种用词不当的称谓,实际上自然语言是高度结构化的。
问题是自然语言的语法规则是如此的复杂,计算机难以正确解析。例如这个句子:
May is fun but June bores me.
到底是说的月份还是人呢?
确切值是很容易查询的,因为结果是二进制的 – 要么匹配,要么不匹配。下面的查询很容易以SQL表达:
WHERE name = "John Smith"
AND user_id = 2
AND date > "2014-09-15"
单词 -》 文档Id
尤其当你是Elasticsearch新手时,对于如何分词以及存储到索引中理解起来比较困难。为了更好的理解如何进行,你可以使用analyze API来查看文本是如何被分析的。在查询字符串参数中指定要使用的分析器,被分析的文本做为请求体:
GET /_analyze?analyzer=standard&text=Text to analyze
结果中每个节点在代表一个词:
{
"tokens": [
{
"token": "text",
"start_offset": 0,
"end_offset": 4,
"type": "",
"position": 1
},
{
"token": "to",
"start_offset": 5,
"end_offset": 7,
"type": "",
"position": 2
},
{
"token": "analyze",
"start_offset": 8,
"end_offset": 15,
"type": "",
"position": 3
}
]
}
这个例子在es7.5版本报错。
为了手动指定特定字段的分析器,我们必须通过映射(mapping)人工设置这些字段。
在上面查询映射中,GET /gb/_mapping返回字段的映射关系。
index参数控制字符串以何种方式被索引。它包含以下三个值当中的一个:
对于analyzed类型的字符串字段,使用analyzer参数来指定哪一种分析器将在搜索和索引的时候使用。默认的,Elasticsearch使用standard分析器,但是你可以通过指定一个内建的分析器来更改它,例如whitespace、simple或english。
{
"tweet": {
"type": "string",
"analyzer": "english"
}
}
你可以在第一次创建索引的时候指定映射的类型。此外,你也可以晚些时候为新类型添加映射(或者为已有的类型更新映射)。
重要:
你可以向已有映射中增加字段,但你不能修改它。如果一个字段在映射中已经存在,这可能意味着那个字段的数据已经被索引。如果你改变了字段映射,那已经被索引的数据将错误并且不能被正确的搜索到。
我们想让tag字段包含多个字段,这非常有可能发生。我们可以索引一个标签数组来代替单一字符串:
{ “tag”: [ “search”, “nosql” ]}
对于数组不需要特殊的映射。任何一个字段可以包含零个、一个或多个值,同样对于全文字段将被分析并产生多个词。
言外之意,这意味着数组中所有值必须为同一类型。你不能把日期和字符窜混合。如果你创建一个新字段,这个字段索引了一个数组,Elasticsearch将使用第一个值的类型来确定这个新字段的类型。
当你从Elasticsearch中取回一个文档,任何一个数组的顺序和你索引它们的顺序一致。你取回的_source字段的顺序同样与索引它们的顺序相同。
然而,数组是做为多值字段被索引的,它们没有顺序。在搜索阶段你不能指定“第一个值”或者“最后一个值”。倒不如把数组当作一个值集合(bag of values)
当然数组可以是空的。这等价于有零个值。事实上,Lucene没法存放null值,所以一个null值的字段被认为是空字段。
这四个字段将被识别为空字段而不被索引:
“empty_string”: “”,
“null_value”: null,
“empty_array”: [],
“array_with_null_value”: [ null ]
我们需要讨论的最后一个自然JSON数据类型是对象(object)——在其它语言中叫做hash、hashmap、dictionary 或者 associative array.
内部对象(inner objects)经常用于在另一个对象中嵌入一个实体或对象。例如,做为在tweet文档中user_name和user_id的替代,我们可以这样写:
{
"tweet": "Elasticsearch is very flexible",
"user": {
"id": "@johnsmith",
"gender": "male",
"age": 26,
"name": {
"full": "John Smith",
"first": "John",
"last": "Smith"
}
}
}
Elasticsearch 会动态的检测新对象的字段,并且映射它们为 object 类型,将每个字段加到 properties 字段下
{
"gb": {
"tweet": { <1>
"properties": {
"tweet": { "type": "string" },
"user": { <2>
"type": "object",
"properties": {
"id": { "type": "string" },
"gender": { "type": "string" },
"age": { "type": "long" },
"name": { <3>
"type": "object",
"properties": {
"full": { "type": "string" },
"first": { "type": "string" },
"last": { "type": "string" }
}
}
}
}
}
}
}
}
<1> 根对象.
<2><3> 内部对象.
对user和name字段的映射与tweet类型自己很相似。事实上,type映射只是object映射的一种特殊类型,我们将 object 称为根对象。它与其他对象一模一样,除非它有一些特殊的顶层字段,比如 _source, _all 等等。
Lucene 并不了解内部对象。 一个 Lucene 文件包含一个键-值对应的扁平表单。 为了让 Elasticsearch 可以有效的索引内部对象,将文件转换为以下格式:
{
"tweet": [elasticsearch, flexible, very],
"user.id": [@johnsmith],
"user.gender": [male],
"user.age": [26],
"user.name.full": [john, smith],
"user.name.first": [john],
"user.name.last": [smith]
}
最后,一个包含内部对象的数组如何索引。 我们有个数组如下所示:
{
"followers": [
{ "age": 35, "name": "Mary White"},
{ "age": 26, "name": "Alex Jones"},
{ "age": 19, "name": "Lisa Smith"}
]
}
此文件会如我们以上所说的被扁平化,但其结果会像如此:
{
"followers.age": [19, 26, 35],
"followers.name": [alex, jones, lisa, smith, mary, white]
}
{age: 35}与{name: Mary White}之间的关联会消失,因每个多值的栏位会变成一个值集合,而非有序的阵列。 这让我们可以知道:
但我们无法取得准确的资料如:
关联内部对象可解决此类问题。