tf.contrib.slim.conv2d()参数详解

convolution(inputs,
          num_outputs,
          kernel_size,
          stride=1,
          padding='SAME',
          data_format=None,
          rate=1,
          activation_fn=nn.relu,
          normalizer_fn=None,
          normalizer_params=None,
          weights_initializer=initializers.xavier_initializer(),
          weights_regularizer=None,
          biases_initializer=init_ops.zeros_initializer(),
          biases_regularizer=None,
          reuse=None,
          variables_collections=None,
          outputs_collections=None,
          trainable=True,
          scope=None)

inputs                        是指需要做卷积的输入图像
num_outputs             指定卷积核的个数(就是filter的个数)
kernel_size               用于指定卷积核的维度(卷积核的宽度,卷积核的高度)
stride                         为卷积时在图像每一维的步长
padding                     为padding的方式选择,VALID或者SAME
data_format              是用于指定输入的input的格式
rate                           对于使用空洞卷积的膨胀率,rate等于1为普通卷积,rate=n代表卷积核中两两数之间插入了n-1个0
activation_fn             用于激活函数的指定,默认的为ReLU函数
normalizer_fn           用于指定正则化函数
normalizer_params  用于指定正则化函数的参数
weights_initializer     用于指定权重的初始化程序
weights_regularizer  为权重可选的正则化程序
biases_initializer       用于指定biase的初始化程序
biases_regularizer    biases可选的正则化程序
reuse                        指定是否共享层或者和变量
variable_collections  指定所有变量的集合列表或者字典
outputs_collections   指定输出被添加的集合
trainable                    卷积层的参数是否可被训练
scope                        共享变量所指的variable_scope

你可能感兴趣的:(python,TensorFlow,深度学习)