有两种丢失数据
——None
——np.nan(NaN)
None是python自带的,其类型为python object。因此,None不能参与到任何计算中
Object类型的运算比int类型的运算慢的多
计算不同数据类型求和时间
%timeit np.arange(1e5,dtype=xxx).sum()
%timeit是指python表达式或语句的执行时间
Pandas中的none与np.nan都视作np.nan
数据清洗
df.loc[index,column] ------>元素索引,肯定可以修改
df[column][index] --------->列是属性,肯定可以修改
df.loc[index][column] ----->从df中取出了样本,对取出来的数据进行了修改,原数据没变
现获取列,在获取行
如:df["python"][3] = np.nan
先获取行,再获取列
df.loc[3]["python"] = np.nan
先获取行,是将样本数据取出来,在内存中的内存地址就不一样了,修改数据失败
df.loc[3,5] =np.nan
Pandas中None与np.NaN的操作
Isnull():判断是否有空数据
Notnoll():判断是否没有空数据
Dropna():过滤丢失数据
Fillna():填充丢失数据
(1)判断函数Isnull()和Notnull()
查找空数据
如:cond=df.isnull().any(axis=1)
df[cond]
过滤掉空数据
如:cond = df.notnull().all(axis=1)
df[cond]
(2)过滤函数Dropna()
如:df.dropna(),删除df表中的含有空数据的样本
可以选则过滤的是行还是列(默认过滤行)
也可以选择过滤的方式how=“all”
(3)数据填充fillna()
Fillna()属性
['value=None', 'method=None', 'axis=None', 'inplace=False', 'limit=None', 'downcast=None', '**kwargs']
对浮点数小数位数进行限定
pd.set_option("display.float_format",lambda x:"%0.1f"%(x)) #保留一位为%0.1,保留两位为%0.2,以此类推
注意:
1.对于空数据,一般进行填充时填充该列的平均值、中位数、众数进行填充。
2.对于和是用什么数据进行填充还得根据实际情况来决定
3.正态分布使用平均值和中位数差别不大。
**计算平均数的用mean()
如:value=df.mean()
df.fillna(value)
**计算中位数用:median()
如:value1 = df.median()
df.fillna(value1)
填充数据可选择行方向和列方向的向前填充或是向后填充
df.fillna(method="bfill",axis=1)#向后填充
df.fillna(method="ffill",axis=1) #向前填充
df.fillna(value=values,limit=1) #限制填充的行数,默认从第一行开始
**统计众数:np.unique(s)
使用众数进行填充同上
Pandas中文件的读取和写入
将数据存储到csv格式的文本
s1.to_csv("./data1.csv",sep=',',index = False)
#存成csv格式,csv就是txt格式,用逗号进行分割,index表示是否将索引也存储进去
#注意重点是sep分隔符和index索引的设置
将csv格式的文本数据导入到jupyter中
如:pd.read_csv("./data1.csv")
将数据存储成html格式
s3.to_html("./data.html")
pd.read_excel(“./data.htm”)
将文件存储成json格式
s3.to_json("./data.json")
pd.read_json("./data.json")
将文件存储成excel格式的文件
s3.to_excel("./data.xls")
pd.read_excel("./data.xls")
有两种丢失数据
——None
——np.nan(NaN)
None是python自带的,其类型为python object。因此,None不能参与到任何计算中
Object类型的运算比int类型的运算慢的多
计算不同数据类型求和时间
%timeit np.arange(1e5,dtype=xxx).sum()
%timeit是指python表达式或语句的执行时间
Pandas中的none与np.nan都视作np.nan
数据清洗
df.loc[index,column] ------>元素索引,肯定可以修改
df[column][index] --------->列是属性,肯定可以修改
df.loc[index][column] ----->从df中取出了样本,对取出来的数据进行了修改,原数据没变
现获取列,在获取行
如:df["python"][3] = np.nan
先获取行,再获取列
df.loc[3]["python"] = np.nan
先获取行,是将样本数据取出来,在内存中的内存地址就不一样了,修改数据失败
df.loc[3,5] =np.nan
Pandas中None与np.NaN的操作
Isnull():判断是否有空数据
Notnoll():判断是否没有空数据
Dropna():过滤丢失数据
Fillna():填充丢失数据
(1)判断函数Isnull()和Notnull()
查找空数据
如:cond=df.isnull().any(axis=1)
df[cond]
过滤掉空数据
如:cond = df.notnull().all(axis=1)
df[cond]
(2)过滤函数Dropna()
如:df.dropna(),删除df表中的含有空数据的样本
可以选则过滤的是行还是列(默认过滤行)
也可以选择过滤的方式how=“all”
(3)数据填充fillna()
Fillna()属性
['value=None', 'method=None', 'axis=None', 'inplace=False', 'limit=None', 'downcast=None', '**kwargs']
对浮点数小数位数进行限定
pd.set_option("display.float_format",lambda x:"%0.1f"%(x))
对于空数据,一般进行填充时填充该列的平均值、中位数、众数进行填充。
对于和是用什么数据进行填充还得根据实际情况来决定
正态分布使用平均值和中位数差别不大。
**计算平均数的用mean()
如:value=df.mean()
df.fillna(value)
**计算中位数用:median()
如:value1 = df.median()
df.fillna(value1)
填充数据可选择行方向和列方向的向前填充或是向后填充
df.fillna(method="bfill",axis=1)#向后填充
df.fillna(method="ffill",axis=1) #向前填充
df.fillna(value=values,limit=1) #限制填充的行数,默认从第一行开始
**统计众数:np.unique(s)
使用众数进行填充同上
Pandas中文件的读取和写入
将数据存储到csv格式的文本
s1.to_csv("./data1.csv",sep=',',index = False)
#存成csv格式,csv就是txt格式,用逗号进行分割,index表示是否将索引也存储进去
#注意重点是sep分隔符和index索引的设置
将csv格式的文本数据导入到jupyter中
如:pd.read_csv("./data1.csv")
将数据存储成html格式
s3.to_html("./data.html")
pd.read_excel(“./data.htm”)
将文件存储成json格式
s3.to_json("./data.json")
pd.read_json("./data.json")
将文件存储成excel格式的文件
s3.to_excel("./data.xls")
pd.read_excel("./data.xls")