吴恩达 Deep Learning assignment2_2

Logistic Regression with a Neural Network mindset

接下来我们将完成第一个编程任务 —— 构建一个逻辑回归分类器来识别猫。 本次作业将指导我们如何使用神经网络思维模式进行操作,因此也将磨练对深度学习的直觉。


构建学习算法的通用架构,包括:
初始化参数
计算成本函数及其梯度
使用优化算法(梯度下降)
按正确的顺序将上述所有三个函数收集到主模型函数中。 

 

1 - Packages 

首先,认识一下本次用到的包并导入

  • numpy是使用Python进行科学计算的基础包。
  • h5py是与存储在H5文件中的数据集进行交互的常用包。
  • matplotlib是一个在Python里非常著名的绘制图形的库。
  • 这里使用PIL和scipy来测试模型,最后使用自己的图片。
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset

%matplotlib inline

2 - Overview of the Problem set 

问题陈述:将获得一个数据集(“data.h5”),其中包含:
 - 标记为cat(y = 1)或非cat(y = 0)的m_train图像训练集
 - 标记为猫或非猫的m_test图像的测试集
 - 每个图像的形状(num_px,num_px,3),其中3表示3个通道(RGB)。 因此,每个图像是正方形(height = num_px)和(width = num_px)。
下面将构建一个简单的图像识别算法,可以正确地将图片分类为猫或非猫。

# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
#加orig的原因是要对输入图像进行预处理

# Example of a picture
index = 5
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")

深度学习中的许多软件错误来自于不适合的矩阵/向量维度。 如果你可以保持你的矩阵/矢量尺寸,你将在很长一段时间内消除许多错误。
exercise:找到以下值:
 -  m_train(训练样例数)
 -  m_test(测试例数)
 -  num_px(= height =训练图像的宽度) 

### START CODE HERE ### (≈ 3 lines of code)
m_train = train_set_x_orig.shape[0] #预处理训练集的第一维度(行数)
m_test = test_set_x_orig.shape[0]    #预处理测试集的第一维度(行数)
num_px = train_set_x_orig.shape[1]    #预处理训练集的第二维度(列数)
### END CODE HERE ###

print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))

吴恩达 Deep Learning assignment2_2_第1张图片

exercise:重塑训练和测试数据集,以便将大小(num_px,num_px,3)的图像展平为单个矢量形状(num_px*num_px*3,1),转置后每列代表一个完整的图片,一共有m_train列。 

公式: 

# Reshape the training and test examples

### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
### END CODE HERE ###

print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))

吴恩达 Deep Learning assignment2_2_第2张图片

要表示彩色图像,必须为每个像素指定红色,绿色和蓝色通道(RGB),因此像素值实际上是三个数字的矢量,范围从0到255。
机器学习中一个常见的预处理步骤是对数据集进行居中和标准化,这意味着您从每个示例中减去整个numpy数组的平均值,然后将每个示例除以整个numpy数组的标准偏差。 但是对于图片数据集,它更简单,更方便,几乎可以将数据集的每一行除以255(像素通道的最大值)。

train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.

 吴恩达 Deep Learning assignment2_2_第3张图片

 3 - General Architecture of the learning algorithm(学习算法的一般体系结构)

使用神经网络构建Logistic回归

原理流程:

吴恩达 Deep Learning assignment2_2_第4张图片

keywords: 我们将执行以下步骤

  •  - 初始化模型的参数
  •  - 通过最小化成本来了解模型的参数
  •  - 使用学习的参数进行预测(在测试集上)
  •  - 分析结果并得出结论 

4 - Building the parts of our algorithm

 吴恩达 Deep Learning assignment2_2_第5张图片

4.1 - Helper functions

 exercise:计算sigmoid

# GRADED FUNCTION: sigmoid

def sigmoid(z):
    """
    Compute the sigmoid of z

    Arguments:
    z -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(z)
    """

    ### START CODE HERE ### (≈ 1 line of code)
    s = 1 / (1 + np.exp(-z))
    ### END CODE HERE ###
    
    return s

print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2]))))

4.2 - Initializing parameters (初始化参数)

exercise:

# GRADED FUNCTION: initialize_with_zeros

def initialize_with_zeros(dim):
    """
    This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
    
    Argument:
    dim -- size of the w vector we want (or number of parameters in this case)
    
    Returns:
    w -- initialized vector of shape (dim, 1)
    b -- initialized scalar (corresponds to the bias)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    w = np.zeros((dim, 1))
    b = 0
    ### END CODE HERE ###

    assert(w.shape == (dim, 1)) #assert语句:
用以检查某一条件是否为True,若该条件为False则会给出一个AssertionError。
    assert(isinstance(b, float) or isinstance(b, int))
    
    return w, b

dim = 2
w, b = initialize_with_zeros(dim)
print ("w = " + str(w))
print ("b = " + str(b))

 

w will be of shape (num_px × num_px × 3, 1).

4.3 - Forward and Backward propagation (前向和后向传播)

exercise:实现一个函数propagate()来计算成本函数及其渐变。

吴恩达 Deep Learning assignment2_2_第6张图片

公式:

吴恩达 Deep Learning assignment2_2_第7张图片

# GRADED FUNCTION: propagate

def propagate(w, b, X, Y):
    """
    Implement the cost function and its gradient for the propagation explained above

    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar 偏置
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) 真正的标签向量

    Return:
    cost -- negative log-likelihood cost for logistic regression 逻辑回归的负对数似然成本
    dw -- gradient of the loss with respect to w, thus same shape as w 相对于w的损失梯度,因此与w的形状相同
    db -- gradient of the loss with respect to b, thus same shape as b 相对于b的损失梯度,因此与b的形状相同
    
    Tips:
    - Write your code step by step for the propagation. np.log(), np.dot()
    """
    
    m = X.shape[1]
    
    # FORWARD PROPAGATION (FROM X TO COST)
    ### START CODE HERE ### (≈ 2 lines of code)
    A = sigmoid(np.dot(w.T, X) + b)            # compute activation
    cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))         # compute cost
    ### END CODE HERE ###
    
    # BACKWARD PROPAGATION (TO FIND GRAD)
    ### START CODE HERE ### (≈ 2 lines of code)
    dw = 1 / m * np.dot(X, (A - Y).T)
    db = 1 / m * np.sum(A - Y)
    ### END CODE HERE ###
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    
    grads = {"dw": dw,
             "db": db}
    
    return grads, cost

w, b, X, Y = np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]])
grads, cost = propagate(w, b, X, Y)
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print ("cost = " + str(cost))

吴恩达 Deep Learning assignment2_2_第8张图片

d) Optimization

exercise:实现优化功能

公式:

# GRADED FUNCTION: optimize

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    """
    This function optimizes w and b by running a gradient descent algorithm
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- True to print the loss every 100 steps
    
    Returns:
    params -- dictionary containing the weights w and bias b
    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
    
    Tips:
    You basically need to write down two steps and iterate through them:
        1) Calculate the cost and the gradient for the current parameters. Use propagate().
        2) Update the parameters using gradient descent rule for w and b.
    """
    
    costs = []
    
    for i in range(num_iterations):
        
        
        # Cost and gradient calculation (≈ 1-4 lines of code)
        ### START CODE HERE ### 
        grads, cost = propagate(w, b, X, Y)
        ### END CODE HERE ###
        
        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]
        
        # update rule (≈ 2 lines of code)
        ### START CODE HERE ###
        w = w - learning_rate * dw
        b = b - learning_rate * db
        ### END CODE HERE ###
        
        # Record the costs
        if i % 100 == 0: #i是否被100整除
            costs.append(cost)
        
        # Print the cost every 100 training examples
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
    
    params = {"w": w,
              "b": b}
    
    grads = {"dw": dw,
             "db": db}
    
    return params, grads, costs

params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False)

print ("w = " + str(params["w"]))
print ("b = " + str(params["b"]))
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print(costs)

吴恩达 Deep Learning assignment2_2_第9张图片

 

exercise:优化 w b 后,我们将用其实现假设函数

分为2步:

# GRADED FUNCTION: predict

def predict(w, b, X):
    '''
    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    
    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''
    
    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)
    
    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    ### START CODE HERE ### (≈ 1 line of code)
    A = sigmoid(np.dot(w.T, X) + b)
    ### END CODE HERE ###

    for i in range(A.shape[1]):
        
        # Convert probabilities A[0,i] to actual predictions p[0,i]将概率A [0,i]转换为实际预测p [0,i]
        ### START CODE HERE ### (≈ 4 lines of code)
        if A[0, i] <= 0.5:
            Y_prediction[0, i] = 0
        else:
            Y_prediction[0, i] = 1
        ### END CODE HERE ###
    
    assert(Y_prediction.shape == (1, m))
    
    return Y_prediction

print ("predictions = " + str(predict(w, b, X)))

 

吴恩达 Deep Learning assignment2_2_第10张图片

你可能感兴趣的:(吴恩达 Deep Learning assignment2_2)