- 从零开始搭建人形机器人SoC硬件系统:完整开发流程详解
AI天才研究院
ChatGPT计算AI人工智能与大数据机器人ai
从零开始搭建人形机器人SoC硬件系统:完整开发流程详解关键词:人形机器人、SoC硬件系统、嵌入式开发、机器人控制、传感器融合、ROS、实时操作系统摘要:本文将详细介绍从零开始搭建人形机器人SoC硬件系统的完整开发流程。我们将从硬件选型开始,逐步讲解系统架构设计、传感器集成、运动控制实现、软件系统搭建等关键环节,并通过实际案例展示如何将各个模块整合为一个完整的机器人系统。文章将采用循序渐进的方式,即
- c++ 语言在无人机应用开发中的应用
ILOVECOMPUTING
c++无人机开发语言硬件实时性能极致
C++语言在无人机应用开发中扮演着核心角色,特别是在对性能、实时性、资源利用效率和底层硬件控制有严格要求的领域。以下是其主要应用领域:飞控系统(FlightControlSystem-FCS)核心功能:这是无人机的大脑。C++用于实现核心的导航、制导与控制(GNC)算法:传感器融合:高效地融合来自IMU(加速度计、陀螺仪)、磁力计、气压计、GPS/GNSS等的数据,计算精确的姿态(俯仰、横滚、偏航
- 智能燃气泄漏检测:AI人工智能与多传感器融合的完美结合
AI智能探索者
AIAgent智能体开发实战人工智能ai
智能燃气泄漏检测:AI人工智能与多传感器融合的完美结合关键词:燃气泄漏检测、多传感器融合、人工智能、机器学习、物联网(IoT)、实时预警、安全防护摘要:燃气泄漏是家庭和工业场景中最危险的安全隐患之一——它可能引发爆炸、中毒甚至火灾。传统检测方法依赖单一传感器或人工巡检,存在误报率高、响应滞后等问题。本文将带你走进“智能燃气泄漏检测”的技术世界,通过“多传感器融合”与“AI人工智能”的双轮驱动,揭秘
- MATLAB/Simulink自动驾驶开发全流程实战:从环境感知到代码部署
AI_DL_CODE
matlab自动驾驶simulink多传感器融合路径规划车辆控制人工智能
摘要:自动驾驶技术的快速发展对开发工具提出了更高要求,MATLAB/Simulink凭借其端到端的开发环境成为行业主流选择。本文系统阐述了MATLAB/Simulink在自动驾驶系统开发中的核心应用,涵盖感知、决策、控制三层架构的技术原理与实现方法。通过SCANIA自动紧急制动系统(AEB)的完整开发案例,详细介绍了从算法设计、大规模仿真验证到硬件在环测试的全流程。文中提供了多传感器融合算法、路径
- 【Python】串口通信库pyserial2
宅男很神经
python开发语言
6.8多传感器融合:YOLO与激光雷达/雷达数据的深度结合6.8.1引言:为什么需要非视觉传感器——以激光雷达为例摄像头因其丰富的信息(颜色、纹理、形状)而成为自动驾驶、智能监控等视觉感知系统的核心。但其固有的局限性不容忽视:深度信息缺失:单目摄像头难以直接获取目标的精确三维位置和距离,需要复杂的几何或深度学习方法进行估算。光照依赖:在强光、弱光、逆光或夜晚环境下,图像质量急剧下降,导致目标检测性
- 使用MATLAB和Simulink来构建一个基于扩展卡尔曼滤波器(EKF)的定位系统
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义传感器模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考轨迹或姿态第七步:运行仿真并分析结果注意事项结论基于多传感器融合的卡尔曼滤波定位系统仿真可以帮助我们理解如何利用不同类型的传感器数据来提高四翼无人机(Quadcopter)的位置和姿态估计精度。在这个教程中,我们将使用M
- 手把手教你学Simulink--多传感器融合与高级滤波场景(50.2):基于卡尔曼滤波(EKF)在非线性系统状态估计中的应用仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义非线性系统模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考姿态或轨迹第七步:运行仿真并分析结果注意事项结论扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是处理非线性系统状态估计的一种常用方法。EKF通过线性化非线性模型来近似标准的卡尔曼滤波过程,从而实现
- 农业机器人初步了解
yuanyuanyuanccc
人工智能机器学习
引言随着技术不断地突破、市场需求的增加、社会变迁与政策支持协同驱动等因素的影响下,农业机器人的种类逐渐的增多。技术上,人工智能、多传感器融合与柔性机械设计的进步,使机器人能够适应复杂农业场景并完成除草、采摘等精细化任务;需求上,由于全球农业劳动力短缺与成本上升,农业工作逐渐使用自动化替代,同时高价值作物种植、垂直农业等新兴业态催生了定制化机器人需求;社会层面上,可持续发展压力推动精准作业以减少农药
- ROS机器人和NPU的往事和新知-250602
zhangrelay
机器人学习
往事:回顾一篇五年前的博客:ROS2机器人笔记20-12-04_ros2移植到vxworks-CSDN博客里面提及专用的机器人处理器,那时候只有那么1-2款专用机器人处理器。ROS机器人与NPU的往事与新知一、往事:从分离到融合的探索早期机器人系统的算力瓶颈传统ROS机器人依赖CPU/GPU进行感知、决策与控制,但在复杂场景(如动态环境导航、多传感器融合)中,实时性与能效比成为瓶颈。例如,基于深度
- 自动驾驶可行驶区域划分综述
吃旺旺雪饼的小男孩
自动驾驶自动驾驶人工智能机器学习
可行使区域划分1.数据采集与融合的深度解析1.1传感器类型与数据特性1.2多传感器融合方法2.环境感知与特征提取的细节2.1车道线检测技术2.2道路边界识别2.3障碍物检测与区域划分3.可行驶区域划分的实现3.1语义分割与几何建模3.2动态场景处理4.路径规划与决策的细节4.1局部路径规划4.2全局路径规划5.关键技术挑战的深入分析5.1复杂场景处理5.2实时性与计算优化5.3安全与冗余设计6.典
- AI人工智能与自动驾驶的融合创新实践
AI智能探索者
AIAgent智能体开发实战人工智能自动驾驶机器学习ai
AI人工智能与自动驾驶的融合创新实践关键词:人工智能、自动驾驶、深度学习、计算机视觉、传感器融合、路径规划、强化学习摘要:本文深入探讨了人工智能技术在自动驾驶领域的创新应用与实践。我们将从核心技术原理出发,详细分析自动驾驶系统的架构和工作流程,重点讲解计算机视觉、传感器融合、决策规划等关键模块的实现方法。通过数学模型、算法原理和实际代码案例,展示AI如何赋能自动驾驶系统实现环境感知、决策制定和车辆
- 第十天 高精地图与定位(SLAM、RTK技术) 多传感器融合(Kalman滤波、深度学习)
MarkHD
车联网深度学习人工智能
前言在自动驾驶技术快速发展的今天,高精地图与多传感器融合已成为实现L4/L5级自动驾驶的核心支柱。本文将从零基础角度,通过具体场景案例,深入解析SLAM、RTK、Kalman滤波等关键技术原理,并附MATLAB/Python代码实例演示,帮助读者构建完整知识体系。一、自动驾驶的"数字视网膜":高精地图1.1高精地图的核心特征高精地图与传统导航地图的本质区别体现在三个维度:厘米级精度:误差范围<20
- 聚焦AI人工智能在自动驾驶的关键技术点
AI天才研究院
计算AI大模型应用入门实战与进阶AIAgent应用开发ai
聚焦AI人工智能在自动驾驶的关键技术点关键词:自动驾驶、人工智能、感知算法、决策规划、深度学习、强化学习、多模态融合摘要:本文系统解析人工智能在自动驾驶中的核心技术体系,深度剖析环境感知、决策规划、控制执行三大核心模块的关键技术点。通过对多传感器融合算法、端到端学习架构、强化学习决策模型等前沿技术的原理阐释与代码实现,揭示AI如何解决复杂交通场景下的动态决策难题。结合实际项目案例与主流工具链,探讨
- DeepSeek自动驾驶中的多传感器融合框架(附DeepSeek行业解决方案100+)
fanxbl957
人工智能理论与实践自动驾驶人工智能机器学习
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人DeepSeek行业解决方案详解总站
- 基于 STM32 的全自动洗车监控系统设计与实现
编码追梦人
单片机项目实战stm32嵌入式硬件单片机
摘要本文提出一种基于STM32F103RCT6芯片的全自动洗车监控系统方案,通过多传感器融合与智能控制算法,实现车辆检测、洗车流程自动化及状态远程监控。系统集成硬件选型、电路设计、软件流程及通信功能,可广泛应用于智能洗车场景。一、硬件系统设计1.核心芯片选型主控制器:STM32F103RCT6(ARMCortex-M3内核,64KBSRAM,256KBFlash,48MHz主频,37个GPIO引脚
- 基于 STM32 的汽车防盗报警系统设计与实现
编码追梦人
单片机项目实战stm32汽车防盗传感器GSM短信报警系统
摘要本文设计了一种基于STM32F103C8T6单片机的汽车防盗报警系统,通过多传感器融合检测非法入侵行为,结合无线通信技术实现远程报警功能。系统分为硬件设计与软件设计两部分,硬件部分详细阐述芯片及功能模块选型与接线方案,软件部分提供流程图及核心代码实现。一、硬件系统设计1.1主控芯片选型芯片型号:STM32F103C8T6选型依据:32位Cortex-M3内核,主频72MHz,满足实时处理需求;
- 人工智能的自动驾驶新纪元:端到端智能系统挑战与前沿探索方案
数澜悠客
开悟思考与沉淀人工智能自动驾驶机器学习
一、引言:从模块化到端到端的范式革命(一)自动驾驶技术演进的三个时代自动驾驶技术自诞生以来,经历了从机械化辅助到智能化决策的漫长演进。早期,以定速巡航为代表的1.0时代,仅实现了简单的速度控制,车辆仍需驾驶员全程主导操控。随着传感器与算法发展,进入2.0时代,车辆具备了自适应巡航、车道保持等功能,通过多传感器融合与简单机器学习算法,实现部分驾驶任务自动化,但系统架构仍基于传统的“感知-决策-控制”
- 自动驾驶的“眼睛”:用Python构建智能障碍物检测系统
Echo_Wish
Python!实战!自动驾驶python人工智能
自动驾驶的“眼睛”:用Python构建智能障碍物检测系统在自动驾驶技术日益成熟的今天,障碍物检测系统成了汽车智能化不可或缺的部分。无论是高速公路上的突发状况,还是城市街道中的行人与车辆,准确识别障碍物并及时反应,是保证行车安全的关键。那么,我们如何用Python构建一个高效的障碍物检测系统呢?今天,我们从图像处理、深度学习、传感器融合几个方面入手,打造一款智能化的障碍物检测解决方案。1.自动驾驶中
- AGV智能搬运机器人:富唯智能引领工业物流高效变革
富唯智能
人工智能工业自动化上下料机器人人工智能机器人
在智能制造与工业4.0深度融合的今天,物流环节的高效与精准已成为企业核心竞争力的关键。富唯智能凭借其自主研发的AGV智能搬运机器人,以创新技术重塑工业物流标准,助力企业实现降本增效的跨越式发展。一、技术突破:精准导航与智能协同富唯智能AGV智能搬运机器人搭载激光SLAM导航技术,结合多传感器融合(3D避障相机、红外、超声波),实现±5mm的重复定位精度,无需铺设轨道即可快速部署,适应动态环境下的实
- 从像素到世界:自动驾驶视觉感知的优化与多传感器融合
赛卡
自动驾驶背后的数学自动驾驶人工智能机器学习pythonnumpyopencv深度学习
上一篇:从像素到世界:自动驾驶视觉感知的坐标变换体系一、引言在自动驾驶领域,视觉感知技术是实现环境理解的关键环节。通过摄像头获取的图像数据,系统能够识别道路、车辆、行人等物体,并为其提供决策依据。然而,从二维图像到三维世界的映射是一个复杂的过程,涉及到多个坐标系之间的转换、三维重建以及多传感器数据的融合。本文将深入探讨自动驾驶视觉感知的数学基础、工程实现以及创新优化方向,旨在为相关研究者和工程师提
- TDA4 平台SBL详解
归宿688
自动驾驶实战自动驾驶
一.简介TDA4是TI推出的一款高性能、超异构的多核SOC,拥有ARMCortex-R5F、ARMCortex-A72、C66以及C71内核,可以部署AUTOSARCP系统、HLOS(Linux或QNX)、图像处理以及深度学习等功能模块,从硬件架构来看可以分为MAIN域、MCU域和WKUP域(DMSC)。MAIN域包括2个A72核、4个R5F核、2个C66核核1个C71核,环境感知、传感器融合、智
- 相机-IMU联合标定:入门
吃水果不削皮
视觉组合导航组合导航
文章目录相机-IMU标定的核心作用1.确定传感器间的时空对齐(Spatio-TemporalCalibration2.提升多传感器融合的精度3.鲁棒性保障标定内容详解1.标定参数2.标定方法⚠️未标定或标定不准的典型问题实际应用建议总结相机-IMU标定的核心作用1.确定传感器间的时空对齐(Spatio-TemporalCalibration外参标定(ExtrinsicCalibration)计算相
- 全自动驾驶(FSD,Full Self-Driving)自动驾驶热点技术的成熟之处就是能判断道路修复修路,能自动利用类似“人眼”的摄像头进行驾驶!值得学习!
九张算数
人工智能自动驾驶学习人工智能
全自动驾驶(FSD,FullSelf-Driving)软件是自动驾驶领域中的热点技术,其核心目标是实现车辆在各种复杂交通环境下的安全、稳定、高效自动驾驶。FSD软件的技术核心涉及多个方面的交叉技术,下面将详细分析说明其主要核心技术组成:1.感知系统感知是自动驾驶的“眼睛”,其主要任务是实时采集并理解车辆周围的环境信息,主要技术包括:传感器融合(SensorFusion):结合摄像头、激光雷达(Li
- 无人机避障与目标识别技术分析!
云卓SKYDROID
无人机人工智能科普高科技云卓科技激光避障
一、无人机避障技术1.技术实现方式传感器融合:视觉传感(RGB/双目/红外相机):基于SLAM(同步定位与地图构建)实现环境建模,但依赖光照条件。激光雷达(LiDAR):高精度点云建模,但成本高、功耗大,小型无人机难以集成。超声波雷达:短距离(5-10米)低成本避障,但易受环境噪声干扰。毫米波雷达:穿透性强(雨雾环境适用),但分辨率低于激光雷达。算法核心:路径规划:A、RRT(快速扩展随机树)等算
- 多模态大模型在目标检测领域的最新进展
辰%
python人工智能语言模型
1.技术融合创新多模态数据融合:传感器融合:整合图像、激光雷达(LiDAR)、毫米波雷达等数据,提升检测精度和鲁棒性。例如,在自动驾驶中,通过融合视觉与LiDAR数据,实现三维目标检测精度提升。特征级融合:利用深度学习自动提取多模态特征并融合,生成更强大的特征表示。如Fusion-Mamba方法通过改进的Mamba机制和门控策略,减少模态间差异,增强特征一致性。端到端学习框架:统一建模:开发整合的
- 智能机器人多传感器融合算法:IMU、LiDAR与视觉集成路径
学习ing1
机器人算法
1.传感器基础1.1IMU工作原理惯性测量单元(IMU)是智能机器人多传感器融合系统中的关键组件之一,它通过测量物体的加速度和角速度来推算物体的运动状态。加速度计原理:加速度计基于牛顿第二定律,通过检测质量块在加速度作用下的位移或力来测量加速度。常见的电容式加速度计利用电容变化与位移的关系来测量加速度。例如,某款高精度电容式加速度计在静态测试中,其测量精度可达[0.01,m/s^2],能够准确检测
- 地平线 LiDAR-Camera 融合多任务 BEVFusion 参考算法-V1.0
算法自动驾驶
该示例为参考算法,仅作为在征程6上模型部署的设计参考,非量产算法。1.简介激光雷达天然地具有深度信息,摄像头可以提供丰富的语义信息,它们是车载视觉感知系统中两个最关键的传感器。但是,如果激光雷达或者摄像头发生故障,则整个感知框架不能做出任何预测,这在根本上限制了实际自动驾驶场景的部署能力。目前主流的感知架构选择在特征层面进行多传感器融合,即中融合,其中比较有代表性的路线就是BEV范式。BEVFus
- 多传感器融合SLAM中如何检验编写的Factor是否有效
海鸥_
从零手写VIOSLAM面经c++linux
多传感器融合中,用Ceres做后端优化,后端可能包含不同Factor,例如雷达的Factor,相机的Factor,或者一些约束例如地面约束的Factor。当后端包含多个Factor时,我们如何检测莫个Factor是否有效了:就是给这个Factor加一个非常大的权重,然后看这个Factor的残差是否会收敛到接近0。一般如果这个Factor的雅可比矩阵没有问题,这个Factor的残差都会收敛到接近0。
- 无人机数据处理系统设计要点与难点!
云卓SKYDROID
无人机云卓科技科普遥控器高科技
一、系统设计要点无人机数据处理系统需要高效、可靠、低延迟地处理多源异构数据(如影像、传感器数据、位置信息等),同时支持实时分析和长期存储。以下是核心设计要点:1.数据采集与预处理多传感器融合:集成摄像头、LiDAR、GPS、IMU、红外等传感器,需设计统一的数据同步机制(如硬件时间戳、PPS信号)。数据压缩与降噪:在采集端进行初步处理(如JPEG压缩、点云降采样),减少传输带宽压力。边缘预处理:在
- 蹭个热点,普及下什么是高速NOA
dushky
高速noa
高速NOA(NavigateonAutopilotforHighway)是智能驾驶领域的一项高阶功能,全称为高速导航辅助驾驶,主要用于车辆在高速公路或封闭快速路场景下的自动化驾驶。以下是它的简单介绍:一、高速NOA是什么?功能定位:L2+/L3级辅助驾驶功能,通过高精地图+多传感器融合,实现高速公路场景的自动导航驾驶,包括自动变道、进出匝道、车速调节等。核心目标:减少驾驶员在长途高速中的操作负担,
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1