姓名:朱睿琦
学号:15180288015
参考:https://baike.baidu.com/item/Diffie-Hellman/9827194?fr=aladdin
http://blog.csdn.net/fw0124/article/details/8462373
【嵌牛导读】:随着互联网络的高速发展,计算机运算能力的提升,对信息的保密也有了更近一步的要求——不仅信息要保密,密钥也要保密。DH(Diffie-Hellman)算法就提供了使密钥安全通过不安全网络的方法。
【嵌牛鼻子】:DH算法,密钥,网络信息安全
【嵌牛提问】:DH算法是用来保护什么在网络中的通信安全?DH密钥交换的基本原理是什么?
【嵌牛正文】:(1)、算法描述
离散对数的概念:
原根:如果a是素数p的一个原根,那么数值:
amodp,a^2modp,…,a^(p-1)modp
是各不相同的整数,且以某种排列方式组成了从1到p-1的所有整数。
离散对数:如果对于一个整数b和素数p的一个原根a,可以找到一个唯一的指数i,使得:
b=(a的i次方)modp其中0≦i≦p-1
那么指数i称为b的以a为基数的模p的离散对数。
Diffie-Hellman算法的有效性依赖于计算离散对数的难度,其含义是:当已知大素数p和它的一个原根a后,对给定的b,要计算i,被认为是很困难的,而给定i计算b却相对容易。
Diffie-Hellman算法:
假如用户A和用户B希望交换一个密钥。
取素数p和整数a,a是p的一个原根,公开a和p。
A选择随机数XA<p,并计算YA=a^XA mod p。
B选择随机数XB<p,并计算YB=a^XB mod p。
每一方都将X保密而将Y公开让另一方得到。
A计算密钥的方式是:K=(YB) ^XA modp
B计算密钥的方式是:K=(YA) ^XB modp
证明:
(YB)^ XA modp= (a^XB modp)^ XA modp
= (a^XB)^ XA modp= (a^XA) ^XB modp(<-- 密钥即为 a^(XA*XB) modp)
=(a^XA modp)^ XB modp= (YA) ^XB modp
由于XA和XB是保密的,而第三方只有p、a、YB、YA可以利用,只有通过取离散对数来确定密钥,但对于大的素数p,计算离散对数是十分困难的。
例子:
假如用户Alice和用户Bob希望交换一个密钥。
取一个素数p=97和97的一个原根a=5。
Alice和Bob分别选择秘密密钥XA=36和XB=58,并计算各自的公开密钥:
YA=a^XA modp=5^36 mod 97=50
YB=a^XB modp=5^58 mod 97=44
Alice和Bob交换了公开密钥之后,计算共享密钥如下:
Alice:K=(YB) ^XA modp=44^36 mod 97=75
Bob:K=(YA) ^XB modp=50^58 mod 97=75
(2)、安全性
当然,为了使这个例子变得安全,必须使用非常大的XA, XB 以及p, 否则可以实验所有的可能取值。(总共有最多97个这样的值, 就算XA和XB很大也无济于事)。
如果p是一个至少 300 位的质数,并且XA和XB至少有100位长, 那么即使使用全人类所有的计算资源和当今最好的算法也不可能从a,p和a^(XA*XB) modp中计算出 XA*XB。
这个问题就是著名的离散对数问题。注意g则不需要很大, 并且在一般的实践中通常是2或者5。
在最初的描述中,迪菲-赫尔曼密钥交换本身并没有提供通讯双方的身份验证服务,因此它很容易受到中间人攻击。
一个中间人在信道的中央进行两次迪菲-赫尔曼密钥交换,一次和Alice另一次和Bob,就能够成功的向Alice假装自己是Bob,反之亦然。
而攻击者可以解密(读取和存储)任何一个人的信息并重新加密信息,然后传递给另一个人。因此通常都需要一个能够验证通讯双方身份的机制来防止这类攻击。
有很多种安全身份验证解决方案使用到了迪菲-赫尔曼密钥交换。例如当Alice和Bob共有一个公钥基础设施时,他们可以将他们的返回密钥进行签名。