#检测opencv插件安装成功否 import cv2 as cv img=cv.imread(r'D:\DeepLearning\timg.jpg') cv.namedWindow('Image') cv.imshow('Image',img) cv.waitKey(0) cv.destroyAllWindows() #1图片读取和展示 import cv2 as cv img=cv.imread('kst.jpg',1)#0是灰度图像,1是彩色图像 cv.imshow('image',img)#image是窗体的名称,img是展示的图像 cv.waitKey(0)#程序的暂停 #2.图片写入 import cv2 as cv img=cv.imread('kst.jpg',1) cv.imwrite('kst2.jpg',img)#name.data #3.图片质量,100k左右清晰。jpg有损压缩,0时压缩比高,100压缩比低 import cv2 as cv img=cv.imread('kst.jpg',1) cv.imwrite('kst3_1.jpg',img,[cv.IMWRITE_JPEG_QUALITY,50])#0-100的有损压缩 #3图片质量:png无损压缩,有图片透明度属性,0时压缩比低,9时压缩比高 import cv2 as cv img=cv.imread('kst.jpg',1) cv.imwrite('kst3_2.png',img,[cv.IMWRITE_PNG_COMPRESSION,0]) #4.像素操作 #像素读取 import cv2 as cv img=cv.imread('kst.jpg',1) (b,g,r)=img[100,100]#opencv读取像素点值返回元组,bgr print(b,g,r) #给图片的【10,100】到【110,100】写入蓝色 #像素写入 for i in range(100): img[10+i,100]=(255,0,0)#蓝色 cv.imshow('kst.jpg',img) cv.waitKey(0) #5.tensorflow操作 import tensorflow as tf data1=tf.constant(2,dtype=tf.int32)#常量的定义与类型 data2=tf.Variable(10,name='var')#变量的定义与初始值 print(data1) print(data2) sess=tf.Session() print(sess.run(data1)) #变量必须要初始化 init=tf.global_variables_initializer() sess.run(init) print(sess.run(data2)) sess.close() #6常量加减乘除运算 import tensorflow as tf data1=tf.constant(6) data2=tf.constant(2) data_add=tf.add(data1,data2) data_sub=tf.subtract(data1,data2) data_mul=tf.multiply(data1,data2) data_div=tf.divide(data1,data2) with tf.Session() as sess: print(sess.run(data_add)) print(sess.run(data_sub)) print(sess.run(data_mul)) print(sess.run(data_div)) print('end') #6常量与变量加减乘除运算 import tensorflow as tf data1=tf.constant(6) data2=tf.Variable(2) data_add=tf.add(data1,data2) data_copy=tf.assign(data2,data_add)#将add值赋给data2 data_sub=tf.subtract(data1,data2) data_mul=tf.multiply(data1,data2) data_div=tf.divide(data1,data2) init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) print(sess.run(data_add)) print(sess.run(data_sub)) print(sess.run(data_mul)) print(sess.run(data_div)) print('sess.run(data_copy)',sess.run(data_copy)) print('data_copy.eval',data_copy.eval()) print('tf.get_default_session',tf.get_default_session().run(data_copy)) print('end') #6placeholder import tensorflow as tf data1=tf.placeholder(tf.float32) data2=tf.placeholder(tf.float32) data_add=tf.add(data1,data2) with tf.Session() as sess: print(sess.run(data_add,feed_dict={data1:6,data2:2})) print('end') #7矩阵运算 import tensorflow as tf mat0=tf.constant([[0,1,2],[2,3,4]]) mat1=tf.zeros([2,3]) mat2=tf.ones([3,2]) mat3=tf.fill([3,3],15) mat4=tf.zeros_like(mat1)#与mat1同纬度的0矩阵 with tf.Session() as sess: print(sess.run(mat0)) print(sess.run(mat1)) print(sess.run(mat2)) print(sess.run(mat3)) print(sess.run(mat4)) #8.matplotlib import numpy as np import matplotlib.pyplot as plt x=np.array([1,2,3,4,5,6,7,8]) y=np.array([3,4,5,5,6,3,7,9]) #折线图(x,y,color,linewidth) plt.plot(x,y,'r',lw=10) #柱状图(x,y,柱子的占比,alpha,color) plt.bar(x,y,0.8,alpha=1,color='b') plt.show() #9.神经网络逼近股票收盘均价 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt endprice=np.array([2511.90,2538.26,2510.68,2591.66,2732.98,2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08]) beginprice=np.array([2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40]) plt.figure() for i in range(0,15): dateone=np.zeros([2]) dateone[0]=i dateone[1]=i priceone=np.zeros([2]) priceone[0]=beginprice[i] priceone[1]=endprice[i] if endprice[i]>beginprice[i]: plt.plot(dateone,priceone,'r',lw=8) else: plt.plot(dateone,priceone,'g',lw=8) plt.show() date=np.linspace(1,15,15) datenormal=np.zeros([15,1]) pricenormal=np.zeros([15,1]) for i in range(15): #数据归一化 datenormal[i,0]=i/14.0 pricenormal[i,0]=endprice[i]/3000.0 x=tf.placeholder(tf.float32,[None,1]) y=tf.placeholder(tf.float32,[None,1]) #隐藏层 w1=tf.Variable(tf.random_uniform([1,10],0,1))#从0到1的1行10列随机数 b1=tf.Variable(tf.zeros([1,10])) wb1=tf.matmul(x,w1)+b1 layer1=tf.nn.relu(wb1) #输出层 w2=tf.Variable(tf.random_uniform([10,1],0,1))#从0到1的1行10列随机数 b2=tf.Variable(tf.zeros([15,1])) wb2=tf.matmul(layer1,w2)+b2 layer2=tf.nn.relu(wb2) loss=tf.reduce_mean(tf.square(y-layer2)) train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss) init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(10000): sess.run(train_step,feed_dict={x:datenormal,y:pricenormal}) pred=sess.run(layer2,feed_dict={x:datenormal}) predprice=np.zeros([15,1]) for i in range(15): predprice[i,0]=(pred*3000)[i,0] plt.plot(date,predprice,'b',lw=1) plt.show()
2.图片特效
#1.图片缩放 import cv2 as cv img=cv.imread('kst.jpg',1) imginfo=img.shape #1.获取图片的长宽通道信息 print(imginfo) height=imginfo[0] width=imginfo[1] deep=imginfo[2] #2.(非)等比例缩小放大 dstheight=int(height*0.5) dstwidth=int(width*0.5) #3.缩放方法:最近邻域插值,双线性插值(默认),像素关系重采样,立方插值 dst=cv.resize(img,(dstwidth,dstheight)) cv.imshow('kstp',dst) cv.waitKey(0) #2.图片剪切x:100-200,y:100-300 import cv2 as cv img=cv.imread('kst.jpg',1) dst=img[100:200,100:300] cv.imshow('kstp2',dst) cv.waitKey(0) #3.图片移位 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] matshift=np.float32([[1,0,100],[0,1,200]])#2行3列。水平移动100,垂直移动200 dst=cv.warpAffine(img,matshift,(width,height))#1data,2mat,3info cv.imshow('dst',dst) cv.waitKey(0) #4.图片镜像 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] deep=imginfo[2] newimginfo=(height*2,width,deep)#新图片的info元组信息 dst=np.zeros(newimginfo,np.uint8)#新图片的大小确定 for i in range(height): for j in range(width): dst[i,j]=img[i,j]#上半部分不变 #x不变,y=2h-y-1 dst[height*2-i-1,j]=img[i,j]#下半部分 for i in range(width): dst[height,i]=(0,0,255) cv.imshow('dst',dst) cv.waitKey(0) #5.图片仿射:原始图片的三个点(左上,左下,右上)映射到新的图片上 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] #确定两图片的三个点 matsrc=np.float32([[0,0],[0,height-1],[width-1,0]]) matdst=np.float32([[50,50],[200,height-100],[width-100,50]]) #组合 mataffine=cv.getAffineTransform(matsrc,matdst)#返回仿射矩阵 dst=cv.warpAffine(img,mataffine,(width,height))#新图片的数据,矩阵,大小 cv.imshow('dst',dst) cv.waitKey(0) #6.图片旋转 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] #旋转矩阵 matrotate=cv.getRotationMatrix2D((height*0.5,width*0.5),30,0.5)#1center,2angle,3缩放比例 dst=cv.warpAffine(img,matrotate,(width,height)) cv.imshow('dst',dst) cv.waitKey(0) #7.图片灰度处理 #方法1:imread import cv2 as cv img0=cv.imread('kst.jpg',0) img1=cv.imread('kst.jpg',1) print(img0.shape) print(img1.shape) #方法2:cvtColor颜色转换 #dst=cv.cvtColor(img,cv.COLOR_BGR2GRAY)#1data,2转换方式 #方法3:R=G=B时是灰度图片,相加取均值 #dst=np.zeros((height,width,3),np.uint8) #for i in range(height): # for j in range(width): # (b,g,r)=img[i,j] # gray=(int(b)+int(g)+int(r))/3 # dst[i,j]=np.uint8(gray) #方法4:心理学公式:gray=r*0.299+g*0.587+b*0.114 dst=np.zeros((height,width,3),np.uint8) for i in range(height): for j in range(width): (b,g,r)=img[i,j] #gray=int(b)*0.114+int(g)*0.587+int(r)*0.299 gray=(int(b)*1+int(g)*2+int(r)*1)/4#定点比浮点运算快 dst[i,j]=np.uint8(gray) cv.imshow('dst',dst) cv.waitKey(0) #8.颜色反转 #8.1灰度反转:255-当前 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) cv.imshow('gray',gray) dst=np.zeros((height,width,1),np.uint8) for i in range(height): for j in range(width): graypixel=gray[i,j] dst[i,j]=255-graypixel cv.imshow('dst',dst) cv.waitKey(0) #8.颜色反转 #8.2彩色反转:255-r/g/b=r/g/b import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] dst=np.zeros((height,width,3),np.uint8) for i in range(height): for j in range(width): (b,g,r)=img[i,j] dst[i,j]=(255-b,255-g,255-r) cv.imshow('dst',dst) cv.waitKey(0) #9.马赛克效果,每10*10个像素都用左上的像素值代替 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] for m in range(100,300): for n in range(100,200): #在200*100的方框内 if m%10==0 and n%10==0:#每10*10的一个小方框内 for i in range(10): for j in range(10): (b,g,r)=img[m,n] img[i+m,j+n]=(b,g,r) cv.imshow('img',img) cv.waitKey(0) #10.毛玻璃效果,每个像素随机取附近像素的值 import cv2 as cv import numpy as np import random img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] dst=np.zeros((height,width,3),np.uint8) mn=8#随机范围不超过8 for m in range(height-mn): for n in range(width-mn):#防止随机取值溢出 index=int(random.random()*8)#0-8 (b,g,r)=img[m+index,n+index] dst[m,n]=(b,g,r) cv.imshow('dst',dst) cv.waitKey(0) #11.图片融合:dst=src1*a+src2*(1-a) import cv2 as cv import numpy as np img1=cv.imread('kst.jpg',1) img2=cv.imread('timg.jpg',1) imginfo=img2.shape height=imginfo[0] width=imginfo[1] #ROI确定两个图片要融合的图形大小 roiH=int(height/3) roiW=int(width/3) img1ROI=img1[0:roiH,0:roiW] img2ROI=img2[0:roiH,0:roiW] #dst dst=np.zeros((roiH,roiW,3),np.uint8) dst=cv.addWeighted(img1ROI,0.5,img2ROI,0.5,0)#1src1,2a,3src2,41-a, #show cv.imshow('dst',dst) cv.waitKey(0) #12.图片边缘检测 #12-1.canny边缘检测:1gray,2高斯滤波去除噪声,3canny边缘检测 import cv2 as cv img=cv.imread('timg.jpg',1) #1gray gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) #2GAUSS imgG=cv.GaussianBlur(gray,(3,3),0) #3canny dst=cv.Canny(imgG,50,50)#1data,2图片卷积操作值后超过这个门限值就认为是边缘,没超过就不是边缘 #show cv.imshow('dst',dst) cv.waitKey(0) #12.图片边缘检测 #12-2sobel算子:1算子模板,2图片卷积,3阈值判决 # y【1,2,1 x【1,0,-1 # 0,0,0 2,0,-2 # -1,-2,-1】 1,0,-1】 import cv2 as cv import numpy as np import math img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) dst=np.zeros((height,width,1),np.uint8) for i in range(height-2): for j in range(width-2): gy=gray[i,j]*1+gray[i,j+1]*2+gray[i,j+2]*1-gray[i+2,j]*1-gray[i+2,j+1]*2-gray[i+2,j+2]*1 gx=gray[i,j]*1-gray[i,j+2]*1+gray[i+1,j]*2-gray[i+1,j+2]*2+gray[i,j+2]*1-gray[i+2,j+2]*1 grad=math.sqrt(gx*gx+gy*gy) if grad>50: dst[i,j]=255 else: dst[i,j]=0 cv.imshow('dst',dst) cv.waitKey(0) #13.浮雕效果:new=相邻像素只差(体现边缘像素)+固定值(增强浮雕灰度等级) import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) dst=np.zeros((height,width,1),np.uint8) for i in range(height): for j in range(width-1): grayp0=int(gray[i,j]) grayp1=int(gray[i,j+1]) newp=grayp0-grayp1+150 if newp>255: newp=255 if newp<0: newp=0 dst[i,j]=newp cv.imshow('dst',dst) cv.waitKey(0) #14.颜色映射:rgb->>new_rgb #加深蓝色效果 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] dst=np.zeros((height,width,3),np.uint8) for i in range(height): for j in range(width): (b,g,r)=img[i,j] b=b*1.5 g=g*1.3 if b>255: b=255 if g>255: g=255 dst[i,j]=(b,g,r) cv.imshow('dst',dst) cv.waitKey(0) #15.油画特效:1gray,2分割成n*n的小方块,3将0-255划分成几个等级,3映射,4统计替代 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) dst=np.zeros((height,width,3),np.uint8) for i in range(4,height-4): for j in range(4,width-4): array1=np.zeros(8,np.uint8)#灰度等级分为8个 for m in range(-4,4):#小方块大小是8*8 for n in range(-4,4): p1=int(gray[i+m,j+n]/32)#256/8=32,i+m表示行,j+n表示列,表示每行个像素到底属于哪个灰度等级 array1[p1]=array1[p1]+1#给array的8个等级中对应的等级加1 currentMax=array1[0]#先获取0等级的个数 l=0#等级从0开始 for k in range(8): if currentMax=(l*32) and gray[i+m,j+n]<=((l+l)*32):#取灰度等级最多的像素 (b,g,r)=img[i+m,j+n] dst[i,j]=(b,g,r) cv.imshow('dst',dst) cv.waitKey(0) #16.图形绘制 import cv2 as cv import numpy as np imginfo=(500,500,3)#height,width,deep dst=np.zeros(imginfo,np.uint8)#全黑的画布,dst目标图片 #A.绘制line cv.line(dst,(100,100),(400,400),(0,0,255),20,cv.LINE_AA) #1dst,2begin,3end,4(bgr),5linewidth,6linestyle #B.绘制矩形 cv.rectangle(dst,(50,100),(200,300),(0,255,0),8) #1dst,2左上,3右下,4bgr,5fill=-1填充,大于0=线条宽度 #C.绘制圆形 cv.circle(dst,(250,250),(50),(152,36,56),2) #1dst,2center,3半径,4bgr,5fill=-1填充,大于0=线条宽度 #D.绘制椭圆,扇形,圆弧 cv.ellipse(dst,(256,256),(150,100),0,0,180,(255,255,0),-1) #1dst,2center,3两个长短轴,4偏转角度,5起始角度,6终止角度,7bgr,8fill #E.任意多边形 points=np.array([[150,50],[140,40],[200,170],[250,250],[150,50]],np.int32) points=points.reshape((-1,1,2)) cv.polylines(dst,[points],True,(0,255,255)) cv.imshow('dst',dst) cv.waitKey(0) #17.绘制文字图片 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) font=cv.FONT_HERSHEY_SIMPLEX#字体类型 cv.rectangle(img,(200,100),(500,400),(0,255,0),3) #A.写字 cv.putText(img,'this is kst',(100,300),font,1,(200,100,255),2,cv.LINE_8) #1dst,2text,3起始坐标,4字体类型,5字体大小,6bgr,7字体的粗细,8线条类型 #B.放图片 height=int(img.shape[0]*0.5) width=int(img.shape[1]*0.5) imgresize=cv.resize(img,(width,height))#将图片缩小 for i in range(height): for j in range(width): img[i+100,j+200]=imgresize[i,j] cv.imshow('src',img) cv.waitKey(0)
3.图片美化
#1.彩色图片直方图 import cv2 as cv import numpy as np def ImageHist(image,type): #color=(255,255,255) #windowname='gray' if type==31: color=(255,0,0) windowname='B hist' elif type==32: color=(0,255,0) windowname='G hist' elif type==33: color=(0,0,255) windowname='R hist' hist=cv.calcHist([image],[0],None,[256],[0.0,255.0])#统计直方图 #1【image】,2直方图通道[0]表示灰度直方图,3mask蒙版,4 直方图分成多少分256,5 0-255表示像素等级 minv,maxv,minl,maxl=cv.minMaxLoc(hist)#灰度值的最小值,最大值,最小值下标,最大值下标 histimg=np.zeros([256,256,3],np.uint8) for h in range(256): intenNormal=int(hist[h]*256/maxv)#归一化hist【h】获取每一个直方图的个数 cv.line(histimg,(h,256),(h,256-intenNormal),color) cv.imshow(windowname,histimg) return histimg img=cv.imread('kst.jpg',1) channels=cv.split(img)#返回3bgr个颜色通道的图像 for i in range(3):#3个颜色通道,各调用一次 ImageHist(channels[i],31+i) cv.waitKey(0) #2.直方图均衡化 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) #2.1灰度图直方图均衡化 #gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) #cv.imshow('src',gray) #dst=cv.equalizeHist(gray) #2.2彩色图直方图均衡化 cv.imshow('src',img) #(b,g,r)=cv.split(img)#分解通道 #bh=cv.equalizeHist(b)#分别均衡化 #gh=cv.equalizeHist(g)++ #rh=cv.equalizeHist(r) #dst=cv.merge((bh,gh,rh))#合并 #2.3yuv直方图均衡化 imgYUV=cv.cvtColor(img,cv.COLOR_BGR2YCrCb)#图片转换成YUV通道 channelYUV=cv.split(imgYUV)#分解 channelYUV[0]=cv.equalizeHist(channelYUV[0]) #channelYUV[1]=cv.equalizeHist(channelYUV[1]) #channelYUV[2]=cv.equalizeHist(channelYUV[2]) merged=cv.merge(channelYUV) dst=cv.cvtColor(merged,cv.COLOR_YCrCb2BGR) cv.imshow('dst',dst) cv.waitKey(0) #3.图片修补 #3.1图片破损 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) for i in range(200,300): img[i,200]=(255,255,255) img[i,200+1]=(255,255,255) img[i,200-1]=(255,255,255) for i in range(150,250): img[250,i]=(255,255,255) img[250+1,i]=(255,255,255) img[250-1,i]=(255,255,255) cv.imwrite('damaged.jpg',img)#写入一个jpg文件 cv.imshow('damage',img) cv.waitKey(0) #3.2图片修补 import cv2 as cv import numpy as np damaged=cv.imread('damaged.jpg',1)#1破损的照片 cv.imshow('damage',damaged) info=damaged.shape height=info[0] width=info[1] paint=np.zeros((height,width,1),np.uint8)#因为是蒙板,所以cahnnnel是1 #2.修补的地方的array for i in range(200,300): paint[i,200]=255 paint[i,200+1]=255 paint[i,200-1]=255 for i in range(150,250): paint[250,i]=255 paint[250+1,i]=255 paint[250-1,i]=255 cv.imshow('paint',paint)#3.展示修补图片的蒙板 #4.修补 result=cv.inpaint(damaged,paint,3,cv.INPAINT_TELEA)#1破损的图片,2修补的蒙板,3通道, cv.imshow('result',result) cv.waitKey(0) #4.灰度直方图源码:统计每个像素的灰度值的出现概率 import cv2 as cv import numpy as np import matplotlib.pyplot as plt img=cv.imread('kst.jpg',1) imginfo = img.shape height=imginfo[0] width=imginfo[1] gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) count=np.zeros(256,np.float)#256个灰度等级 for i in range(height): for j in range(width): pixel=gray[i,j] index=int(pixel) count[index]=count[index]+1 #计算每个等级的概率 for i in range(256): count[i]=count[i]/(height*width) x=np.linspace(0,255,256)#开始,结束,一共多少份 y=count plt.bar(x,y,0.9,alpha=1,color='r') plt.show() cv.waitKey(0) #5.彩色直方图源码 import cv2 as cv import numpy as np import matplotlib.pyplot as plt img=cv.imread('kst.jpg',1) imginfo = img.shape height=imginfo[0] width=imginfo[1] count_b=np.zeros(256,np.float) count_g=np.zeros(256,np.float) count_r=np.zeros(256,np.float) for i in range(height): for j in range(width): (b,g,r)=img[i,j] index_b=int(b) index_g=int(g) index_r=int(r) count_b[index_b]=count_b[index_b]+1 count_g[index_g]=count_g[index_g]+1 count_r[index_r]=count_r[index_r]+1 for i in range(256): count_b[i]=count_b[i]/(height*width) count_g[i]=count_g[i]/(height*width) count_r[i]=count_r[i]/(height*width) x=np.linspace(0,255,256) y1=count_b plt.figure() plt.bar(x,y1,0.9,alpha=1,color='b') y2=count_g plt.figure() plt.bar(x,y2,0.9,alpha=1,color='g') y3=count_r plt.figure() plt.bar(x,y3,0.9,alpha=1,color='r') plt.show() cv.waitKey(0) #6.灰度直方图均衡化:累计概率*255=new import cv2 as cv import numpy as np import matplotlib.pyplot as plt img=cv.imread('kst.jpg',1) #cv.imshow('src',img) imginfo = img.shape height=imginfo[0] width=imginfo[1] gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) cv.imshow('src',gray) count=np.zeros(256,np.float)#256个灰度等级 for i in range(height): for j in range(width): pixel=gray[i,j] index=int(pixel) count[index]=count[index]+1 #计算每个等级的概率 for i in range(256): count[i]=count[i]/(height*width) #1计算累计概率 sum=float(0) for i in range(256): sum=sum+count[i] count[i]=sum #2计算映射表 map=np.zeros(256,np.uint16) for i in range(256): map[i]=np.uint16(count[i]*255) #3映射 for i in range(height): for j in range(width): pixel=gray[i,j] gray[i,j]=map[pixel] cv.imshow('dst',gray) cv.waitKey(0) #7.彩色直方图均衡化 import cv2 as cv import numpy as np import matplotlib.pyplot as plt img=cv.imread('kst.jpg',1) cv.imshow('kst',img) imginfo = img.shape height=imginfo[0] width=imginfo[1] count_b=np.zeros(256,np.float) count_g=np.zeros(256,np.float) count_r=np.zeros(256,np.float) for i in range(height): for j in range(width): (b,g,r)=img[i,j] index_b=int(b) index_g=int(g) index_r=int(r) count_b[index_b]=count_b[index_b]+1 count_g[index_g]=count_g[index_g]+1 count_r[index_r]=count_r[index_r]+1 for i in range(256): count_b[i]=count_b[i]/(height*width) count_g[i]=count_g[i]/(height*width) count_r[i]=count_r[i]/(height*width) #1计算累计概率 sum_b=float(0) sum_g=float(0) sum_r=float(0) for i in range(256): sum_b=sum_b+count_b[i] count_b[i]=sum_b sum_g=sum_g+count_g[i] count_g[i]=sum_g sum_r=sum_r+count_r[i] count_r[i]=sum_r #2计算映射表 map_b=np.zeros(256,np.uint16) map_g=np.zeros(256,np.uint16) map_r=np.zeros(256,np.uint16) for i in range(256): map_b[i]=np.uint16(count_b[i]*255) map_g[i]=np.uint16(count_g[i]*255) map_r[i]=np.uint16(count_r[i]*255) #3映射 dst=np.zeros((height,width,3),np.uint8) for i in range(height): for j in range(width): (b,g,r)=img[i,j] b=map_b[b] g=map_g[g] r=map_r[r] dst[i,j]=(b,g,r) cv.imshow('dst',dst) cv.waitKey(0) #8.亮度增强 #8.1p=p+40 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] cv.imshow('src',img) dst=np.zeros((height,width,3),np.uint8) for i in range(height): for j in range(width): (b,g,r)=img[i,j] bb=int(b)+40 gg=int(g)+40 rr=int(r)+40 if bb>255: bb=255 if gg>255: gg=255 if rr>255: rr=255 dst[i,j]=(bb,gg,rr) cv.imshow('dst',dst) cv.waitKey(0) #9.磨皮美白:双边滤波 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) dst=cv.bilateralFilter(img,15,35,35) cv.imshow('img',img) cv.imshow('dst',dst) cv.waitKey(0) #10.高斯滤波和均值滤波 #10.1高斯:消除椒盐噪声,图片变模糊 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) #dst=cv.GaussianBlur(img,(5,5),1.5) imginfo=img.shape height=imginfo[0] width=imginfo[1] dst=np.zeros((height,width,3),np.uint8) #10.2均值滤波:6*6的全为1的模板,计算卷积/36=mean,图片模糊 for i in range(3,height-3): for j in range(3,width-3): sum_b=int(0) sum_g=int(0) sum_r=int(0) for m in range(-3,3): for n in range(-3,3): (b,g,r)=img[i+m,j+n] sum_b=sum_b+int(b) sum_g=sum_g+int(g) sum_r=sum_r+int(r) b=np.uint8(sum_b/36) g=np.uint8(sum_g/36) r=np.uint8(sum_r/36) dst[i,j]=(b,g,r) cv.imshow('img',img) cv.imshow('dst',dst) cv.waitKey(0) #11.中值滤波:3*3模板,排序,中间值作为像素值 import cv2 as cv import numpy as np img=cv.imread('kst.jpg',1) imginfo=img.shape height=imginfo[0] width=imginfo[1] gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) cv.imshow('gray',gray) dst=np.zeros((height,width,3),np.uint8) collect=np.zeros(9,np.uint8)#9个邻域像素值 for i in range(1,height-1): for j in range(1,width-1): k=0#邻域下标值,从0开始 for m in range(-1,2): for n in range(-1,2): collect[k]=gray[i+m,j+n] k=k+1 #冒泡法 取中间值 for k in range(9): min=collect[k] for t in range(k+1,9): if min
4.图片与视频的检测识别
#机器学习:1样本,2特征,3分类器,4预测检验 #4.1haar+adaboost:人脸识别 #4.2hog+svm:行人检测 #1,数据:视频分解成图片 import cv2 as cv cap=cv.VideoCapture('lz.mp4')#获取一个视频文件 isopened=cap.isOpened#判断视频是否可以打开 print(isopened) fps=cap.get(cv.CAP_PROP_FPS)#获取视频帧率 height=int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))#获取图像height width=int(cap.get(cv.CAP_PROP_FRAME_WIDTH))#获取图像width print(fps,height,width) i=0#一共要多少张图片,从第0张开始 while(isopened):#当视频可以打开时 if i==10: break else: i=i+1 (flag,frame)=cap.read()#读取每张(帧)图片的flag(是否读取成功),frame(图片内容) filename='image'+str(i)+'.jpg' print(filename) if flag==True:#读取图片成功的话 cv.imwrite(filename,frame,[cv.IMWRITE_JPEG_QUALITY,100])#把如片写入本地文件:1文件名,2文件内容,图片质量 print('end!') ##1,数据:图片合成视频 import cv2 as cv img=cv.imread('image1.jpg',3) imginfo=img.shape size=(imginfo[1],imginfo[0])#w,h print(size) #写视频的对象:1名称,2编码器,3视频帧率,4每张图片的大小 videowrite=cv.VideoWriter('lz2.mp4',-1,24,size)#对象 for i in range(1,11): filename='image'+str(i)+'.jpg' img=cv.imread(filename) videowrite.write(img)#对象调用写的方法,写一个视频 print('end') #2.特征:haar特征 #特征:像素经过运算得到的结果, #目标区分:阈值判决 #haar特征: #3.分类器: #haar+adaboost:人脸检测:1load xml,2load jpg,3haar gray, 4detect,5draw import cv2 as cv import numpy as np #1.load xml face_xml=cv.CascadeClassifier(r'D:\DeepLearning\haarshare\haarcascade_frontalface_default.xml') eye_xml=cv.CascadeClassifier(r'D:\DeepLearning\haarshare\haarcascade_eye.xml') #2.load jpg img=cv.imread('kst.jpg',1) cv.imshow('src',img) #3.haar,gray gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) #4.detect face: faces=face_xml.detectMultiScale(gray,1.3,7)#1data,2haar模板的缩放比例,3人脸检测的最小像素 print('face=',len(faces)) #5.draw for (x,y,w,h) in faces: cv.rectangle(img,(x,y),(x+w,y+h),(255,0,0),4) #4.2detect eye roi_face=gray[y:y+h,x:x+w]#人脸区域的灰度图 roi_color=img[y:y+h,x:x+w]#人脸区域的彩色图 eyes=eye_xml.detectMultiScale(roi_face)#在灰度图中检测眼睛 print('eye=',len(eyes)) #5.2draw eye for (e_x,e_y,e_w,e_h) in eyes: cv.rectangle(roi_color,(e_x,e_y),(e_x+e_w,e_y+e_h),(0,255,0),2) cv.imshow('dst',img) cv.waitKey(0) #3.SVM import cv2 as cv import numpy as np import matplotlib.pyplot as plt #1.准备数据 rand1=np.array([[155,48],[159,50],[164,53],[168,56],[172,60]]) rand2=np.array([[152,53],[156,55],[160,56],[172,64],[176,65]]) #2label label=np.array([[0],[0],[0],[0],[0],[1],[1],[1],[1],[1]]) #3.data data=np.vstack((rand1,rand2)) data=np.array(data,dtype='float32') #4.训练svm svm=cv.ml.SVM_create() #设置svm属性 svm.setType(cv.ml.SVM_C_SVC)#type svm.setKernel(cv.ml.SVM_LINEAR)#line核 svm.setC(0.01)#核属性 #训练 result=svm.train(data,cv.ml.ROW_SAMPLE,label) #预测 pt_data=np.vstack([[167,55],[162,57]])#0,1 pt_data=np.array(pt_data,dtype='float32') print(pt_data) _,pt=svm.predict(pt_data) print(pt) #4.hog+svm:1样本,2训练,3预测,识别 import cv2 as cv import numpy as np import matplotlib.pyplot as plt PosNum=820#正样本820个 NegNum=1931#负样本1931个 winsize=(64,128)#win窗口是整张图片大小,1个 blocksize=(16,16)#blok窗口大小,105个, blockstride=(8,8)#block滑动的步长 cellsize=(8,8)#每个block里面的cell大小,4个 nBin=9#cell里面的方向参数是九个,3780个 #创建hog对象 hog=cv.HOGDescriptor(winsize,blocksize,blockstride,cellsize,nBin) #创建svm svm=cv.ml.SVM_create() #计算hog featureNum=int(((128-16)/8+1)*((64-16)/8+1)*4*9)#hog特征的维度3780 featureArray=np.zeros(((PosNum+NegNum),featureNum),np.float32) labelArray=np.zeros(((PosNum+NegNum),1),np.int32) for i in range(PosNum): filename='pos/'+str(i+1)+'.jpg' img=cv.imread(filename) hist=hog.compute(img,(8,8))#计算hog特征 #将hog特征装入特征向量:featureArray[i]=hist for j in range(featureNum): featureArray[i,j]=hist[j] labelArray[i,0]=1#正样本标签1 for i in range(NegNum): filename='neg/'+str(i+1)+'.jpg' img=cv.imread(filename) hist=hog.compute(img,(8,8))#计算hog特征 #将hog特征装入特征向量:featureArray[i]=hist for j in range(featureNum): featureArray[i+PosNum,j]=hist[j] labelArray[i+PosNum,0]=-1 #svm属性设置 svm.setType(cv.ml.SVM_C_SVC) svm.setKernel(cv.ml.SVM_LINEAR) svm.setC(0.01) #训练 ret=svm.train(featureArray,cv.ml.ROW_SAMPLE,labelArray) #检测 #1.1计算rho alpha = np.zeros((1),np.float32) rho = svm.getDecisionFunction(0,alpha) print(rho) print(alpha) #1.2计算resultarray alphaArray = np.zeros((1,1),np.float32) supportVArray = np.zeros((1,featureNum),np.float32) resultArray = np.zeros((1,featureNum),np.float32) alphaArray[0,0] = alpha resultArray = -1*alphaArray*supportVArray # 1.3detect myDetect = np.zeros((3781),np.float32) for i in range(0,3780): myDetect[i] = resultArray[0,i] myDetect[3780] = rho[0] # rho svm (判决) myHog = cv.HOGDescriptor() myHog.setSVMDetector(myDetect) # 1.4load imageSrc = cv.imread('Test2.jpg',1) # (8,8) win objs = myHog.detectMultiScale(imageSrc,0,(8,8),(32,32),1.05,2) # xy wh 三维 最后一维 x = int(objs[0][0][0]) y = int(objs[0][0][1]) w = int(objs[0][0][2]) h = int(objs[0][0][3]) # 绘制展示 cv.rectangle(imageSrc,(x,y),(x+w,y+h),(255,0,0),2) cv.imshow('dst',imageSrc) cv.waitKey(0) #5.KNN手写数字识别 import tensorflow as tf import numpy as np import random from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets('MNIST_data',one_hot=True) #设置属性 trainNum=55000 testNum=10000 trainSize=500 testSize=5 # data 分解 1 trainSize 2范围0-trainNum 3 replace=False trainIndex = np.random.choice(trainNum,trainSize,replace=False)#在trainnum中不重复的选择trainsize个数据 testIndex = np.random.choice(testNum,testSize,replace=False) trainData = mnist.train.images[trainIndex]# 训练图片 trainLabel = mnist.train.labels[trainIndex]# 训练标签 testData = mnist.test.images[testIndex] testLabel = mnist.test.labels[testIndex] # 28*28 = 784 print('trainData.shape=',trainData.shape)#500*784 1 图片个数 2 784? print('trainLabel.shape=',trainLabel.shape)#500*10 print('testData.shape=',testData.shape)#5*784 print('testLabel.shape=',testLabel.shape)#5*10 print('testLabel=',testLabel)# 4 :testData [0] 3:testData[1] 6 # tf input 784->image trainDataInput = tf.placeholder(shape=[None,784],dtype=tf.float32) trainLabelInput = tf.placeholder(shape=[None,10],dtype=tf.float32) testDataInput = tf.placeholder(shape=[None,784],dtype=tf.float32) testLabelInput = tf.placeholder(shape=[None,10],dtype=tf.float32) #knn distance 5*785. 5*1*784 # 5 500 784 (3D) 2500*784 f1 = tf.expand_dims(testDataInput,1) # 维度扩展 f2 = tf.subtract(trainDataInput,f1)# 784 sum(784) f3 = tf.reduce_sum(tf.abs(f2),reduction_indices=2)# 完成数据累加 784 abs # 5*500 f4 = tf.negative(f3)# 取反 f5,f6 = tf.nn.top_k(f4,k=4) # 选取f4 最大的四个值 # f3 最小的四个值 # f6 index->trainLabelInput f7 = tf.gather(trainLabelInput,f6) # f8 num reduce_sum reduction_indices=1 '竖直' f8 = tf.reduce_sum(f7,reduction_indices=1) # tf.argmax 选取在某一个最大的值 index f9 = tf.argmax(f8,dimension=1) # f9 -> test5 image -> 5 num with tf.Session() as sess: # f1 <- testData 5张图片 p1 = sess.run(f1,feed_dict={testDataInput:testData[0:5]}) print('p1=',p1.shape)# p1= (5, 1, 784) p2 = sess.run(f2,feed_dict={trainDataInput:trainData,testDataInput:testData[0:5]}) print('p2=',p2.shape)#p2= (5, 500, 784) (1,100) p3 = sess.run(f3,feed_dict={trainDataInput:trainData,testDataInput:testData[0:5]}) print('p3=',p3.shape)#p3= (5, 500) print('p3[0,0]=',p3[0,0]) #130.451 knn distance p3[0,0]= 155.812 p4 = sess.run(f4,feed_dict={trainDataInput:trainData,testDataInput:testData[0:5]}) print('p4=',p4.shape) print('p4[0,0]',p4[0,0]) p5,p6 = sess.run((f5,f6),feed_dict={trainDataInput:trainData,testDataInput:testData[0:5]}) #p5= (5, 4) 每一张测试图片(5张)分别对应4张最近训练图片 #p6= (5, 4) print('p5=',p5.shape) print('p6=',p6.shape) print('p5[0,0]',p5[0]) print('p6[0,0]',p6[0])# p6 index p7 = sess.run(f7,feed_dict={trainDataInput:trainData,testDataInput:testData[0:5],trainLabelInput:trainLabel}) print('p7=',p7.shape)#p7= (5, 4, 10) print('p7[]',p7) p8 = sess.run(f8,feed_dict={trainDataInput:trainData,testDataInput:testData[0:5],trainLabelInput:trainLabel}) print('p8=',p8.shape) print('p8[]=',p8) p9 = sess.run(f9,feed_dict={trainDataInput:trainData,testDataInput:testData[0:5],trainLabelInput:trainLabel}) print('p9=',p9.shape) print('p9[]=',p9) p10 = np.argmax(testLabel[0:5],axis=1) print('p10[]=',p10) j = 0 for i in range(0,5): if p10[i] == p9[i]: j = j+1 print('ac=',j*100/5) #6.CNN手写数字识别 #cnn : 1 卷积 # ABC # A: 激励函数+矩阵 乘法加法 # A CNN : pool(激励函数+矩阵 卷积 加法) # C:激励函数+矩阵 乘法加法(A-》B) # C:激励函数+矩阵 乘法加法(A-》B) + softmax(矩阵 乘法加法) # loss:tf.reduce_mean(tf.square(y-layer2)) # loss:code #1 import import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 2 load data mnist = input_data.read_data_sets('MNIST_data',one_hot = True) # 3 input imageInput = tf.placeholder(tf.float32,[None,784]) # 28*28 labeInput = tf.placeholder(tf.float32,[None,10]) # knn # 4 data reshape # [None,784]->M*28*28*1 2D->4D 28*28 wh 1 channel imageInputReshape = tf.reshape(imageInput,[-1,28,28,1]) # 5 卷积 w0 : 卷积内核 5*5 out:32 in:1 w0 = tf.Variable(tf.truncated_normal([5,5,1,32],stddev = 0.1)) b0 = tf.Variable(tf.constant(0.1,shape=[32])) # 6 # layer1:激励函数+卷积运算 # imageInputReshape : M*28*28*1 w0:5,5,1,32 layer1 = tf.nn.relu(tf.nn.conv2d(imageInputReshape,w0,strides=[1,1,1,1],padding='SAME')+b0) # M*28*28*32 # pool 采样 数据量减少很多M*28*28*32 => M*7*7*32 layer1_pool = tf.nn.max_pool(layer1,ksize=[1,4,4,1],strides=[1,4,4,1],padding='SAME') # [1 2 3 4]->[4] # 7 layer2 out : 激励函数+乘加运算: softmax(激励函数 + 乘加运算) # [7*7*32,1024] w1 = tf.Variable(tf.truncated_normal([7*7*32,1024],stddev=0.1)) b1 = tf.Variable(tf.constant(0.1,shape=[1024])) h_reshape = tf.reshape(layer1_pool,[-1,7*7*32])# M*7*7*32 -> N*N1 # [N*7*7*32] [7*7*32,1024] = N*1024 h1 = tf.nn.relu(tf.matmul(h_reshape,w1)+b1) # 7.1 softMax w2 = tf.Variable(tf.truncated_normal([1024,10],stddev=0.1)) b2 = tf.Variable(tf.constant(0.1,shape=[10])) pred = tf.nn.softmax(tf.matmul(h1,w2)+b2)# N*1024 1024*10 = N*10 # N*10( 概率 )N1【0.1 0.2 0.4 0.1 0.2 。。。】 # label。 【0 0 0 0 1 0 0 0.。。】 loss0 = labeInput*tf.log(pred) loss1 = 0 # 7.2 for m in range(0,500):# test 100 for n in range(0,10): loss1 = loss1 - loss0[m,n] loss = loss1/500 # 8 train train = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # 9 run with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(100): images,labels = mnist.train.next_batch(500) sess.run(train,feed_dict={imageInput:images,labeInput:labels}) pred_test = sess.run(pred,feed_dict={imageInput:mnist.test.images,labeInput:labels}) acc = tf.equal(tf.arg_max(pred_test,1),tf.arg_max(mnist.test.labels,1)) acc_float = tf.reduce_mean(tf.cast(acc,tf.float32)) acc_result = sess.run(acc_float,feed_dict={imageInput:mnist.test.images,labeInput:mnist.test.labels}) print(acc_result) #7.爬取网站图片 import urllib import urllib3 import os from bs4 import BeautifulSoup # load url html = urllib.request.urlopen('https://class.imooc.com/?c=ios&mc_marking=286b51b2a8e40915ea9023c821882e74&mc_channel=L5').read() # parse url data 1 html 2 'html.parser' 3 'utf-8' soup = BeautifulSoup(html,'html.parser',from_encoding='utf-8') # img images = soup.findAll('img') print(images) imageName = 0 for image in images: link = image.get('src') print('link=',link) link = 'http:'+link fileFormat = link[-3:] if fileFormat == 'png' or fileFormat == 'jpg': fileSavePath = 'D:\\DeepLearning\\'+str(imageName)+'.jpg' imageName = imageName +1 urllib.request.urlretrieve(link,fileSavePath)
5.实战案例
import cv2 as cv #1.打开摄像头: capture=cv.VideoCapture(0) def video(): capture=cv.VideoCapture(0) while(True): flag,frame=capture.read() frame=cv.flip(frame,1)#左右调换,上下是-1 cv.imshow('video',frame) c=cv.waitKey(50) if c==27: break video() #cv.waitKey(0) cv.destroyAllWindows() #2彩图取反:dst=cv.bitwise_not(img) import cv2 as cv '''def fantu(img): height=img.shape[0] width=img.shape[1] channel=img.shape[2] for row in range(height): for col in range(width): for c in range(channel): pv=img[row,col,c] img[row,col,c]=255-pv''' def fantu(img): dst=cv.bitwise_not(img) return dst img=cv.imread('kst.jpg',1) cv.imshow('img',img) t1=cv.getTickCount()#获取cpu时钟 dst=fantu(img) t2=cv.getTickCount() print('time:%s ms'%((t2-t1)/cv.getTickFrequency()*1000)) cv.imshow('dst',dst) cv.waitKey(0) #3HSV图像转换,跟踪指定颜色的物体 import cv2 as cv import numpy as np def hsv_demo(): capture=cv.VideoCapture(0) while(True): flag,frame=capture.read() if flag==False: break hsv=cv.cvtColor(frame,cv.COLOR_BGR2HSV) lower_hsv=np.array([26,43,46]) upper_hsv=np.array([34,255,255])#黄色 mask=cv.inRange(hsv,lowerb=lower_hsv,upperb=upper_hsv) dst=cv.bitwise_and(frame,frame,mask=mask) cv.imshow('mask',dst) c=cv.waitKey(40) if c==27: break hsv_demo() ![HSV.png](attachment:HSV.png)# #像素运算:cv.add,cv.divide,cv.multiply,cv.divide #与运算:cv.bitwise_and,或运算:cv.bitwise_or,非运算:cv.bitwise_not #提高图片对比度和亮度 import cv2 as cv import numpy as np def contrast_brighten(img,c,b): h,w,ch=img.shape blank=np.zeros([h,w,ch],img.dtype) dst=cv.addWeighted(img,c,blank,1-c,b) cv.imshow('dst',dst) cv.waitKey(0) img=cv.imread('kst.jpg') contrast_brighten(img,1.2,1.5)#1data,2对比度,3亮度 #ROI感兴趣区域,泛洪填充 import cv2 as cv import numpy as np def fill_color(img): copy=img.copy() h,w=copy.shape[:2] mask=np.zeros([h+2,w+2],np.uint8)#要求mask+2 #在(30,30)的色素-100到+50的范围内填充黄色 cv.floodFill(copy,mask,(30,30),(0,255,255),(100,100,100),(50,50,50),cv.FLOODFILL_FIXED_RANGE) cv.imshow('dst',copy) cv.waitKey(0) def fill_binary(): image=np.zeros([400,400,3],np.uint8) image[100:300,100:300,:]=255 cv.imshow('fill_binary',image) mask=np.ones([402,402,1],np.uint8) mask[101:301,101:301]=0 cv.floodFill(image,mask,(200,200),(100,2,255),cv.FLOODFILL_MASK_ONLY) cv.imshow('filled',image) cv.waitKey(0) img=cv.imread('kst.jpg') cv.imshow('img',img) #fill_color(img)#1data,2对比度,3亮度 fill_binary() ![%E5%BE%AE%E4%BF%A1%E6%88%AA%E5%9B%BE_20200417093158.png](attachment:%E5%BE%AE%E4%BF%A1%E6%88%AA%E5%9B%BE_20200417093158.png)# #卷积模糊 import cv2 as cv import numpy as np def blur_demo(img): #均值模糊 #dst=cv.blur(img,(15,15))#对image图像做(15,1)的卷积核,大小全是1 #中值模糊 dst=cv.medianBlur(img,15) #高斯模糊 dst=cv.GaussianBlur(img,(0,0),3) cv.imshow('blur',dst) def clamp(a): if a>255: return 255 if a<0: return 0 else: return a #高斯噪声 def gaussian_noise(image): h,w,c=image.shape for row in range(h): for col in range(w): s=np.random.normal(0,20,3) image[row,col,0]=clamp(image[row,col,0]+s[0]) image[row,col,1]=clamp(image[row,col,1]+s[1]) image[row,col,2]=clamp(image[row,col,2]+s[2]) cv.imshow('dst',image) img=cv.imread('kst.jpg') blur_demo(img) #gaussian_noise(img) cv.waitKey(0) cv.destroyAllWindows() #EPF:边缘保留滤波(高斯双边模糊【美颜效果】,均值迁移) import cv2 as cv import numpy as np img=cv.imread('dz.jpg') dst=cv.bilateralFilter(img,0,30,15)#高斯 #dst=cv.pyrMeanShiftFiltering(img,10,50)#均值迁移 cv.imshow('dst',dst) cv.waitKey(0) cv.destroyAllWindows() #直方图 import cv2 as cv import numpy as np import matplotlib.pyplot as plt img=cv.imread('dz.jpg') #plt.hist(img.ravel(),256,[0,255])#bins256,range【0,255】 #plt.show('直方图') def image_hist(img): color=('blue','green','red') for i,color in enumerate(color): hist=cv.calcHist([img],[i],None,[256],[0,256])#None是mask没有,i是图像的第几个channel plt.plot(hist,color=color) plt.xlim([0,256]) plt.show() #image_hist(img) #根据图片的直方图求相似性: def creat_rgb_hist(image): h,w,c=image.shape rgbhist=np.zeros([16*16*16,1],np.float32) bsize=256/16 for row in range(h): for col in range(w): b=image[row,col,0] g=image[row,col,1] r=image[row,col,2] index=np.int(b/bsize)*16*16+np.int(g/bsize)*16+np.int(r/bsize) rgbhist[np.int(index),0]=rgbhist[np.int(index),0]+1 return rgbhist def hist_compare(image1,image2): hist1=creat_rgb_hist(image1) hist2=creat_rgb_hist(image2) match1=cv.compareHist(hist1,hist2,cv.HISTCMP_BHATTACHARYYA) match2=cv.compareHist(hist1,hist2,cv.HISTCMP_CORREL) match3=cv.compareHist(hist1,hist2,cv.HISTCMP_CHISQR) print('巴氏距离:%s,相关性:%s,卡方:%s'%(match1,match2,match3)) image1=cv.imread('dz.jpg') image2=cv.imread('dz.jpg') hist_compare(image1,image2) #直方图反向投影跟踪 #1.图像的hsv2D直方图 import cv2 as cv import numpy as np import matplotlib.pyplot as plt def hist2d(image): hsv=cv.cvtColor(image,cv.COLOR_BGR2HSV) #1image,2channel,3mask,4histsize,5ranges hist=cv.calcHist([image],[0,1],None,[32,32],[0,180,0,256]) plt.imshow(hist,interpolation='nearest') plt.title('2d histogram') plt.show() #2.图像的反向投影跟踪 def back_projection(sample,target): sample_hsv=cv.cvtColor(sample,cv.COLOR_BGR2HSV) target_hsv=cv.cvtColor(target,cv.COLOR_BGR2HSV)#两个图转换成HSV samplehist=cv.calcHist([sample_hsv],[0,1],None,[32,32],[0,180,0,256])#计算HSV cv.normalize(samplehist,samplehist,0,255,cv.NORM_MINMAX)#标准化HSV #反向投影 dst=cv.calcBackProject([target_hsv],[0,1],samplehist,[0,180,0,256],1) cv.imshow('backprojection',dst) cv.waitKey(0) src=cv.imread('timg.jpg') #hist2d(src) sample=cv.imread('aim.png') target=cv.imread('timg.jpg') back_projection(sample,target) #图像二值化 import cv2 as cv import numpy as np import matplotlib.pyplot as plt def threshold(img): gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) #全局阈值 #ret,binary=cv.threshold(gray,0,255,cv.THRESH_BINARY | cv.THRESH_OTSU) #print('threshold value:%s'%ret) #局部阈值#贼清晰,有漫画效果 dst=cv.adaptiveThreshold(gray,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY,25,8) cv.imshow('binary',dst) cv.waitKey(0) img=cv.imread('dz.jpg') threshold(img) #金字塔: import cv2 as cv import numpy as np def pyramid_demo(image): level=3 temp=image.copy() pyramid_images=[] for i in range(level): dst=cv.pyrDown(temp) pyramid_images.append(dst) cv.imshow('pyramid_down_'+str(i),dst) temp=dst.copy() return pyramid_images #拉普拉斯金字塔,要用高斯金字塔 def lapalian_demo(image): pyramid_images=pyramid_demo(image) level=len(pyramid_images) for i in range(level-1,-1,-1): if (i-1)<0: expand=cv.pyrUp(pyramid_images[i],dstsize=image.shape[:2]) lpls=cv.subtract(image,expand) cv.imshow('lapalian_down'+str(i),lpls) else: expand=cv.pyrUp(pyramid_images[i],dstsize=pyramid_images[i-1].shape[:2]) lpls=cv.subtract(pyramid_images[i-1],expand) cv.imshow('lapalian_down'+str(i),lpls) img=cv.imread('timg.jpg')#图像要是2的n次方的像素 #pyramid_demo(img) lapalian_demo(img) cv.waitKey(0) #边缘提取,一阶导数,sobel算子, import cv2 as cv import numpy as np def sobel_demo(image): grad_x=cv.Scharr(image,cv.CV_32F,1,0)#Scharr算子比sobel算子增强边缘,用法一样 grad_y=cv.Scharr(image,cv.CV_32F,0,1) gradx=cv.convertScaleAbs(grad_x) grady=cv.convertScaleAbs(grad_y) cv.imshow('gradient_x',gradx) cv.imshow('gradient_y',grady) gradxy=cv.addWeighted(gradx,0.5,grady,0.5,0) cv.imshow('gradient',gradxy) #拉普拉斯算子,二阶导数 def lapalian_demo(image): dst=cv.Laplacian(image,cv.CV_32F) lpls=cv.convertScaleAbs(dst) cv.imshow('dst',dst) image=cv.imread('kst.jpg') #sobel_demo(image) lapalian_demo(image) cv.waitKey(0) #canny边缘提取:1高斯模糊,2灰度转换,3计算梯度,4非最大信号抑制,5高低阈值输出二值图像 import cv2 as cv import numpy as np def edge_demo(image): blurred=cv.GaussianBlur(image,(3,3),0) gray=cv.cvtColor(blurred,cv.COLOR_BGR2GRAY) xgrad=cv.Sobel(gray,cv.CV_16SC1,1,0) ygrad=cv.Sobel(gray,cv.CV_16SC1,0,1) edge_output=cv.Canny(xgrad,ygrad,50,150) cv.imshow('canny edge',edge_output) #边缘彩色化 dst=cv.bitwise_and(image,image,mask=edge_output) cv.imshow('color edge',dst) img=cv.imread('kst.jpg') edge_demo(img) cv.imshow('img',img) cv.waitKey(0) #基于霍夫变换的直线检测,圆检测 import cv2 as cv import numpy as np def line_detect(image): gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY)#灰度图 edges=cv.Canny(gray,50,150,apertureSize=3)#图像边缘提取 lines=cv.HoughLinesP(edges,1,np.pi/180,100,minLineLength=30,maxLineGap=20) for line in lines: x1,y1,x2,y2=line[0] cv.line(image,(x1,y1),(x2,y2),(0,0,255),2) cv.imshow('lines',image) def circle_detect(image): dst=cv.pyrMeanShiftFiltering(image,10,100)#对图像去噪 gray=cv.cvtColor(dst,cv.COLOR_BGR2GRAY) circles=cv.HoughCircles(gray,cv.HOUGH_GRADIENT,1,20,param1=50,param2=30,minRadius=0,maxRadius=0) circles=np.uint16(np.around(circles)) for i in circles[0,:]: cv.circle(image,(i[0],i[1]),i[2],(0,0,255),2) cv.circle(image,(i[0],i[1]),2,(255,0,0),2) cv.imshow('circle',image) image=cv.imread('kst.jpg') #line_detect(image) circle_detect(image) cv.waitKey(0) #对象测量 import cv2 as cv import numpy as np def measure_object(image): gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY) #cv.THRESH_BINARY_INV二值化取反 ret,binary=cv.threshold(gray,0,255,cv.THRESH_BINARY_INV|cv.THRESH_OTSU) print('threshold value:%s'%ret)#二值化的阈值 cv.imshow('binary image',binary) outimage,contours,hireachy=cv.findContours(binary,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE) for i,contour in enumerate(contours): area=cv.contourArea(contour)#轮廓面积 x,y,w,h=cv.boundingRect(contour)#轮廓矩形 mm=cv.moments(contour)#轮廓中心矩 cx=mm['m10']/mm['m00'] cy=mm['m01']/mm['m00'] cv.circle(image,(np.int(cx),np.int(cy)),3,(0,255,255),-1) cv.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2) print('countour area %s'%area) #多边形逼近 approxCurve=cv.approxPolyDP(contour,4,True) print(approxCurve.shape) if approxCurve.shape[0]>6:#多边形 cv.drawContours(image,contours,i,(0,0,255),2) if approxCurve.shape[0]==4:#四边形 cv.drawContours(image,contours,i,(0,255,255),2) if approxCurve.shape[0]==3:#三角形 cv.drawContours(image,contours,i,(255,0,255),2) cv.imshow('measure',image) image=cv.imread('a.jpg') measure_object(image) cv.waitKey(0) ![%E5%BE%AE%E4%BF%A1%E6%88%AA%E5%9B%BE_20200418135620.png](attachment:%E5%BE%AE%E4%BF%A1%E6%88%AA%E5%9B%BE_20200418135620.png) #分水岭算法 import cv2 as cv import numpy as np def watershed(image): # blurred=cv.pyrMeanShiftFiltering(image,10,100) gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY) ret,binary=cv.threshold(gray,0,255,cv.THRESH_BINARY_INV|cv.THRESH_OTSU) cv.imshow('binary',binary) #开运算 #kernel=cv.getStructuringElement(cv.MORPH_RECT,(3,3)) #mb=cv.morphologyEx(binary,cv.MORPH_OPEN,kernel,iterations=2) #sure_bg=cv.dilate(mb,kernel,iterations=3) #cv.imshow('opt',sure_bg) #距离变换 dist=cv.distanceTransform(binary,cv.DIST_L2,3) dist_output=cv.normalize(dist,0,1.0,cv.NORM_MINMAX) cv.imshow('distance',dist_output*50) ret,surface=cv.threshold(dist,dist.max()*0.6,255,cv.THRESH_BINARY) cv.imshow('surface',surface) surface_fg=np.uint8(surface) unknow=cv.subtract(binary,surface_fg) ret,markers=cv.connectedComponents(surface_fg) print(ret) markers=markers+1 markers[unknow==255]=0 markers=cv.watershed(image,markers=markers) image[markers==-1]=[0,0,255] cv.imshow('result',image) image=cv.imread('b.jpg') watershed(image) cv.waitKey(0) #人脸检测 import cv2 as cv import numpy as np def face_detect(image): gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY) face_detect=cv.CascadeClassifier(r'D:\DeepLearning\haarshare\haarcascade_frontalface_default.xml') faces=face_detect.detectMultiScale(gray,1.1,2) for x,y,w,h in faces: cv.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2) cv.imshow('result',image) capture=cv.VideoCapture(0) while(True): ret,frame=capture.read() frame=cv.flip(frame,1) face_detect(frame) c=cv.waitKey(10) if c==27:#esc break import cv2 as cv import numpy as np from PIL import Image import pytesseract as tess #验证码识别 import cv2 as cv import numpy as np from PIL import Image import pytesseract as tess def recognize_text(image): gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY) cv.imshow('gray',gray) ret,binary=cv.threshold(gray,0,255,cv.THRESH_BINARY_INV|cv.THRESH_OTSU) cv.imshow('binary',binary) #去掉干扰项 kernel=cv.getStructuringElement(cv.MORPH_RECT,(2,2)) bin1=cv.morphologyEx(binary,cv.MORPH_OPEN,kernel) cv.imshow('open',bin1) cv.bitwise_not(bin1,bin1) textImage=Image.fromarray(bin1) text=tess.image_to_string(textImage) print('识别结果%s'%text) image=cv.imread('yzm.png') recognize_text(image) cv.imshow('rsc',image) cv.waitKey(0) cv.destroyAllWindows()