pytorch学习笔记(3)

#FizzBuzz
def fizz_buzz_encode(i):
    if i%15==0:return 3
    elif i%5==0:return 2
    elif i%3==0:return 1
    else:return 0
def fizz_buzz_decode(i,prediction):
    return [str(i), 'fizz', 'buzz', 'fizzbuzz'][prediction]
def helper(i):
    print(fizz_buzz_decode(i,fizz_buzz_encode(i)))
for i in range(1,16):
    helper(i)
import numpy as np
import torch
NUM_DIGITS=10
def fizz_buzz_encode(i):
    if i%15==0:return 3
    elif i%5==0:return 2
    elif i%3==0:return 1
    else:return 0
#输入用二进制表示
def binary_encode(i,num_digits):
    return np.array([i>>d & 1 for d in range(num_digits)][::-1])
trX=torch.Tensor([binary_encode(i,NUM_DIGITS) for i in range(101,2**NUM_DIGITS)])
trY=torch.LongTensor([fizz_buzz_encode(i) for i in range (101,2**NUM_DIGITS)])
binary_encode(15,NUM_DIGITS)

NUM_HIDDEN=100
model=torch.nn.Sequential(torch.nn.Linear(NUM_DIGITS,NUM_HIDDEN),torch.nn.ReLU(),torch.nn.Linear(NUM_HIDDEN,4))
if torch.cuda.is_available():
    model=model.cuda()

loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=0.05)
BATCH_SIZE=128
for epoch in range(1000):
    for start in range(0,len(trX),BATCH_SIZE):
        end=start+BATCH_SIZE
        batchX=trX[start:end]
        batchY=trY[start:end]
        if torch.cuda.is_available():
            batchX=batchX.cuda()
            batchY=batchY.cuda()
        y_pred=model(batchX)
        loss=loss_fn(y_pred,batchY)
        print('Epoch',epoch,loss.item())
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        

#测试
testX=torch.Tensor([binary_encode(i,NUM_DIGITS)  for i in range(1,101)])
if torch.cuda.is_available():
    testX=textX.cuda()
with torch.no_grad():
    testY=model(testX)
predicts=zip(range(1,101),testY.max(1)[1].cpu().data.tolist())
print([fizz_buzz_decode(i,x) for i,x in predicts])

  

  

你可能感兴趣的:(pytorch学习笔记(3))