这段时间小编参加了一个叫prcv的挑战赛,其中就有一个项目是多标签图像分类,可是小编一直使用的是caffe框架,这给这个任务带来了比较大的挑战,据说可以通过修改caffe源码来实现多标签分类问题,但是我觉得太麻烦了,也不想去修改我的caffe源码,毕竟caffe也不太好安装,tensorflow,keas等框架小编半生不熟,经过搜索,打听到mxnet比较适合解决这个问题,于是小编开始摸索mxnet,一查官方文档,基本有了了解,特此记录下。
深度学习框架几乎都是大同小异,学习这些无非就是几个步骤
1、准备数据集
2、转换成框架需要的数据格式
3、搭建模型开始训练
4、利用生成的模型进行预测
5、学习迁移学习等
6、目标检测
7、RNN等
接下来我们开始吧
(一)安装mxnet
此过程直接跳过吧,网上太多了,小编非常建议源码安装不要使用pip安装,小编在这给出参考链接,其中cuda等如果是cpu可跳过
https://www.cnblogs.com/whu-zeng/p/6160312.html
(二)准备数据集
本次实验使用的数据集来自小编的各种搜集,其中一个文件夹里是圣诞老人,一个是负样本,小编将要实现二分类,多分类同样可参考,文件结构如图所示,image里包含两类,1代表负样本,0代表圣诞老人
这样裸着的jpg图片不能直接作为训练数据,需要转化成比较规范的格式。首先,输入CNN的原始图片应当具有同样的尺寸,同样的通道数(如RGB为3通道)等等。另外,mxnet推荐所有的数据都应该以某种DataIter的形式呈现,这样我们通过mxnet的接口就可以很方便地进行训练(见后文)。
(三 转换数据集格式)
mxnet支持将一种.rec格式的数据集直接导入为DataIter,同时提供了一种工具可以将一个裸的图片数据集转化成.rec格式。为了简化过程,我们采用mxnet提供的小工具来将我们的数据集转化为.rec格式(此举与caffe下的create_imagenet.sh是一模一样的)。
mxnet提供的工具在mxnet/tools目录下,如果im2rec.cc/cpp已经编译成可执行文件,则可以使用该可执行文件;否则可以使用同目录下的im2rec.py。我使用的是im2rec.py。
我们找到mxnet/tools/im2rec.py,其源码有错误,小编修改了下确保无误
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import sys
curr_path = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(curr_path, "../python"))
import mxnet as mx
import random
import argparse
import cv2
import time
def list_image(root, recursive, exts):
image_list = []
if recursive:
cat = {}
for path, subdirs, files in os.walk(root, followlinks=True):
subdirs.sort()
print(len(cat), path)
for fname in files:
fpath = os.path.join(path, fname)
suffix = os.path.splitext(fname)[1].lower()
if os.path.isfile(fpath) and (suffix in exts):
if path not in cat:
cat[path] = len(cat)
yield (len(image_list), os.path.relpath(fpath, root), cat[path])
else:
for fname in os.listdir(root):
fpath = os.path.join(root, fname)
suffix = os.path.splitext(fname)[1].lower()
if os.path.isfile(fpath) and (suffix in exts):
yield (len(image_list), os.path.relpath(fpath, root), 0)
def write_list(path_out, image_list):
with open(path_out, 'w') as fout:
for i, item in enumerate(image_list):
line = '%d\t' % item[0]
for j in item[2:]:
line += '%f\t' % j
line += '%s\n' % item[1]
fout.write(line)
def make_list(args):
image_list = list_image(args.root, args.recursive, args.exts)
image_list = list(image_list)
if args.shuffle is True:
random.seed(100)
random.shuffle(image_list)
N = len(image_list)
chunk_size = (N + args.chunks - 1) / args.chunks
for i in xrange(args.chunks):
chunk = image_list[i * chunk_size:(i + 1) * chunk_size]
if args.chunks > 1:
str_chunk = '_%d' % i
else:
str_chunk = ''
sep = int(chunk_size * args.train_ratio)
sep_test = int(chunk_size * args.test_ratio)
write_list(args.prefix + str_chunk + '_test.lst', chunk[:sep_test])
write_list(args.prefix + str_chunk + '_train.lst', chunk[sep_test:sep_test + sep])
write_list(args.prefix + str_chunk + '_val.lst', chunk[sep_test + sep:])
def read_list(path_in):
with open(path_in) as fin:
while True:
line = fin.readline()
if not line:
break
line = [i.strip() for i in line.strip().split('\t')]
item = [int(line[0])] + [line[-1]] + [float(i) for i in line[1:-1]]
yield item
def image_encode(args, item, q_out):
try:
img = cv2.imread(os.path.join(args.root, item[1]), args.color)
except:
print('imread error:', item[1])
return
if img is None:
print('read none error:', item[1])
return
if args.center_crop:
if img.shape[0] > img.shape[1]:
margin = (img.shape[0] - img.shape[1]) / 2;
img = img[margin:margin + img.shape[1], :]
else:
margin = (img.shape[1] - img.shape[0]) / 2;
img = img[:, margin:margin + img.shape[0]]
if args.resize:
if img.shape[0] > img.shape[1]:
newsize = (args.resize, img.shape[0] * args.resize / img.shape[1])
else:
newsize = (img.shape[1] * args.resize / img.shape[0], args.resize)
img = cv2.resize(img, newsize)
if len(item) > 3 and args.pack_label:
header = mx.recordio.IRHeader(0, item[2:], item[0], 0)
else:
header = mx.recordio.IRHeader(0, item[2], item[0], 0)
try:
s = mx.recordio.pack_img(header, img, quality=args.quality, img_fmt=args.encoding)
q_out.put((s, item))
except Exception, e:
print('pack_img error:', item[1], e)
return
def read_worker(args, q_in, q_out):
while True:
item = q_in.get()
if item is None:
break
image_encode(args, item, q_out)
def write_worker(q_out, fname, working_dir):
pre_time = time.time()
count = 0
fname_rec = os.path.basename(fname)
fname_rec = os.path.splitext(fname)[0] + '.rec'
fout = open(fname+'.tmp', 'w')
record = mx.recordio.MXRecordIO(os.path.join(working_dir, fname_rec), 'w')
while True:
deq = q_out.get()
if deq is None:
break
s, item = deq
record.write(s)
line = '%d\t' % item[0]
for j in item[2:]:
line += '%f\t' % j
line += '%s\n' % item[1]
fout.write(line)
if count % 1000 == 0:
cur_time = time.time()
print('time:', cur_time - pre_time, ' count:', count)
pre_time = cur_time
count += 1
os.rename(fname+'.tmp', fname)
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Create an image list or \
make a record database by reading from an image list')
parser.add_argument('prefix', help='prefix of input/output lst and rec files.')
parser.add_argument('root', help='path to folder containing images.')
cgroup = parser.add_argument_group('Options for creating image lists')
cgroup.add_argument('--list', type=bool, default=False,
help='If this is set im2rec will create image list(s) by traversing root folder\
and output to .lst.\
Otherwise im2rec will read .lst and create a database at .rec' )
cgroup.add_argument('--exts', type=list,action='append',default=['.jpeg', '.jpg'],
help='list of acceptable image extensions.')
cgroup.add_argument('--chunks', type=int, default=1, help='number of chunks.')
cgroup.add_argument('--train-ratio', type=float, default=1.0,
help='Ratio of images to use for training.')
cgroup.add_argument('--test-ratio', type=float, default=0,
help='Ratio of images to use for testing.')
cgroup.add_argument('--recursive', type=bool, default=False,
help='If true recursively walk through subdirs and assign an unique label\
to images in each folder. Otherwise only include images in the root folder\
and give them label 0.')
rgroup = parser.add_argument_group('Options for creating database')
rgroup.add_argument('--resize', type=int, default=0,
help='resize the shorter edge of image to the newsize, original images will\
be packed by default.')
rgroup.add_argument('--center-crop', type=bool, default=False,
help='specify whether to crop the center image to make it rectangular.')
rgroup.add_argument('--quality', type=int, default=80,
help='JPEG quality for encoding, 1-100; or PNG compression for encoding, 1-9')
rgroup.add_argument('--num-thread', type=int, default=1,
help='number of thread to use for encoding. order of images will be different\
from the input list if >1. the input list will be modified to match the\
resulting order.')
rgroup.add_argument('--color', type=int, default=1, choices=[-1, 0, 1],
help='specify the color mode of the loaded image.\
1: Loads a color image. Any transparency of image will be neglected. It is the default flag.\
0: Loads image in grayscale mode.\
-1:Loads image as such including alpha channel.')
rgroup.add_argument('--encoding', type=str, default='.jpg', choices=['.jpg', '.png'],
help='specify the encoding of the images.')
rgroup.add_argument('--shuffle', default=True, help='If this is set as True, \
im2rec will randomize the image order in .lst' )
rgroup.add_argument('--pack-label', default=False,
help='Whether to also pack multi dimensional label in the record file')
args = parser.parse_args()
args.prefix = os.path.abspath(args.prefix)
args.root = os.path.abspath(args.root)
return args
if __name__ == '__main__':
args = parse_args()
if args.list:
make_list(args)
else:
if os.path.isdir(args.prefix):
working_dir = args.prefix
else:
working_dir = os.path.dirname(args.prefix)
files = [os.path.join(working_dir, fname) for fname in os.listdir(working_dir)
if os.path.isfile(os.path.join(working_dir, fname))]
count = 0
for fname in files:
if fname.startswith(args.prefix) and fname.endswith('.lst'):
print('Creating .rec file from', fname, 'in', working_dir)
count += 1
image_list = read_list(fname)
# -- write_record -- #
try:
import multiprocessing
q_in = [multiprocessing.Queue(1024) for i in range(args.num_thread)]
q_out = multiprocessing.Queue(1024)
read_process = [multiprocessing.Process(target=read_worker, args=(args, q_in[i], q_out)) \
for i in range(args.num_thread)]
for p in read_process:
p.start()
write_process = multiprocessing.Process(target=write_worker, args=(q_out, fname, working_dir))
write_process.start()
for i, item in enumerate(image_list):
q_in[i % len(q_in)].put(item)
for q in q_in:
q.put(None)
for p in read_process:
p.join()
q_out.put(None)
write_process.join()
except ImportError:
print('multiprocessing not available, fall back to single threaded encoding')
import Queue
q_out = Queue.Queue()
fname_rec = os.path.basename(fname)
fname_rec = os.path.splitext(fname)[0] + '.rec'
record = mx.recordio.MXRecordIO(os.path.join(working_dir, fname_rec), 'w')
cnt = 0
pre_time = time.time()
for item in image_list:
image_encode(args, item, q_out)
if q_out.empty():
continue
_, s, _ = q_out.get()
record.write(s)
if cnt % 1000 == 0:
cur_time = time.time()
print('time:', cur_time - pre_time, ' count:', cnt)
pre_time = cur_time
cnt += 1
if not count:
print('Did not find and list file with prefix %s'%args.prefix)
我们开始运行生成list文件,里面存储了图像的信息(第一个路径是生成名,第二个是图像路径)
python im2rec.py --recursive=True --exts=.jpg --list=True --train-ratio 0.8 --test-ratio 0.1 /home/xiaorun/mxnet/tools/mydata /home/xiaorun/mxnet/tools/images/
接下来我们利用下面脚本生成.rec格式便于Mxnet训练
python im2rec.py mydata_train.lst images/ --resize 224 --num-thread 8
(三)接下来我们可以搭建模型训练自己数据集了
首先我们找到自己mxnet路径下 /home/xiaorun/mxnet/example/image-classification/
里面包含了很多训练脚本以及网络模型,其中symbols是目前的主流模型,小编自己稍微瞄了几眼,发现还是挺新的,也特别方便,我们用什么模型,直接调用里面的model即可,common里存放的是数据处理记忆参数的传入,大家可详细看,我以traincifar.py为例,我们只需要修改里面的数据集与模型,将数据集和模型换成自己的即可,为了方便,我们在mxnet/example/image-classification/
新建一个mynet文件用来训练自己的数据集,把traincifar.py symbols common考进去
其中traincifar.py我们要修改数据集部分,以及一些默认参数
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import argparse
import logging
logging.basicConfig(level=logging.DEBUG)
from common import find_mxnet, data, fit
from common.util import download_file
import mxnet as mx
def download_cifar10():
data_dir="/home/xiaorun/mxnet/tools/"
fnames = (os.path.join(data_dir, "mydata_train.rec"),
os.path.join(data_dir, "mydata_test.rec"))
#download_file('http://data.mxnet.io/data/cifar10/cifar10_val.rec', fnames[1])
#download_file('http://data.mxnet.io/data/cifar10/cifar10_train.rec', fnames[0])
return fnames
if __name__ == '__main__':
# download data
(train_fname, val_fname) = download_cifar10()
# parse args
parser = argparse.ArgumentParser(description="train ",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
fit.add_fit_args(parser)
data.add_data_args(parser)
data.add_data_aug_args(parser)
#data.set_data_aug_level(parser, 2)
parser.set_defaults(
# network,define your net
network = 'lenet',
num_layers = 110,
# data
data_train = train_fname,
data_val = val_fname,
#your classes
num_classes = 2,
num_examples = 737,
image_shape = '3,224,224',
pad_size = 4,
# train
batch_size = 1,
num_epochs = 15,
lr = .05,
lr_step_epochs = '5,10',
)
args = parser.parse_args()
# load network
from importlib import import_module
net = import_module('symbols.'+args.network)
sym = net.get_symbol(**vars(args))
# train
fit.fit(args, sym, data.get_rec_iter)