1.读取
2.数据预处理
3.数据划分—训练集和测试集数据划分
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)
4.文本特征提取
sklearn.feature_extraction.text.CountVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer
sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf2 = TfidfVectorizer()
观察邮件与向量的关系
向量还原为邮件
不知道什么问题
4.模型选择
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
说明为什么选择这个模型?
高斯分布是符合正态分布模型
5.模型评价:混淆矩阵,分类报告
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_predict)
说明混淆矩阵的含义
混淆矩阵是一个2 × 2的情形分析表,显示以下四组记录的数目:作出正确判断的肯定记录(真阳性)、作出错误判断的肯定记录(假阴性)、作出正确判断的否定记录(真阴性)以及作出错误判断的否定记录(假阳性)
from sklearn.metrics import classification_report
说明准确率、精确率、召回率、F值分别代表的意义
准确率:被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。(TP+TN)/总
精确率:表示被分为正例的示例中实际为正例的比例。 TP/(TP+FP)
召回率 :召回率是覆盖面的度量,度量有多个正例被分为正例。TP/(TP+FN)
F值 : 精确率 * 召回率 * 2 / ( 精确率 + 召回率) 。F值就是准确率(P)和召回率(R)的加权调和平均。
6.比较与总结
如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?
CountVectorizer:只考虑每个单词出现的频率;然后构成一个特征矩阵,每一行表示一个训练文本的词频统计结果。
TfidfVectorizer:除了考量某词汇在本文本出现的频率,还关注包含这个词汇的其它文本的数量。