参考原文:
从结构到性能,一文概述XGBoost、Light GBM和CatBoost的同与不同
决策树模型,XGBoost,LightGBM和CatBoost模型可视化
XGBoost、LightGBM和CatBoost
XGBoost是陈天奇于2014年提出的一种算法,被称为GBM Killer。它用预排序算法+直方图算法为每一层的叶子找出最佳分裂,简而言之,就是它是不加区分地分裂同一层所有叶子。
XGBoost算法的思想:不断添加树,不断进行特征分裂来生成一棵树,每添加一棵树就是学习一个新的函数来拟合上次的残差,当训练完成后得到K棵树,要预测一个样本的分数,其实就是根据样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点对应一个分数,最后需要将每棵树对应的分数加起来就是该样本的预测值;
XGBoost能自动利用cpu的多线程,而且适当改进了gradient boosting,加了剪枝,控制了模型的复杂程度, 传统GBDT以CART作为基分类器,特指梯度提升决策树算法,而XGBoost还支持线性分类器(gblinear),这个时候XGBoost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题);
XGBoost使用的是pre-sorted算法,基本工作流程如下:
对每个叶子(分割点)遍历所有特征;
对每个特征,按特征值对数据点进行排序;
确定当前特征的基本分裂增益,用线性扫描决定最佳分裂方法;
基于所有特征采取最佳分裂方法
直方图算法的工作方式则是根据当前特征把所有数据点分割称离散区域,然后利用这些区域查找直方图的分割值。虽然比起预排序算法那种在排序好的特征值上枚举所有可能的分割点的做法,直方图算法的效率更高,但它在速度上还是落后于GOSS。
LightGBM是个快速、分布式的、高性能的基于决策树的梯度提升算法,可以用于分类、回归、排序等机器学习任务中。
因为它是基于决策树算法的,它采用最优的leaf-wise策略分裂叶子节点,其它提升算法一般采用的是depth-wise或者level-wise而不是leaf-wise。因此,在LightGBM算法中,当增长到相同的叶子节点,leaf-wise算法比level-wise算法减少更多的loss。因此导致更高的精度,而其他的任何已存在的提升算法都不能够达。与此同时,它的速度也让人感到震惊,这就是该算法名字Light 的原因。Leaf-Wise分裂导致复杂性的增加并且可能导致过拟合。但是这是可以通过设置另一个参数 max-depth来克服,它分裂产生的树的最大深度。总结起来LightGBM采用Histogram算法进行特征选择以及采用Leaf-wise的决策树生长策略,使其在一批以树模型为基模型的boosting算法中脱颖而出。
LightGBM使用的是histogram算法,基本思想是先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。
Level-wise过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上Level-wise是一种低效的算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。
Leaf-wise则是一种更为高效的策略,每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同Level-wise相比,在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度。Leaf-wise的缺点是可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。
2.1、为什么 GOSS 方法如此高效?
在过滤数据样例寻找分割值时,LightGBM 使用的是全新的技术:基于梯度的单边采样(GOSS);而 XGBoost 则通过预分类算法和直方图算法来确定最优分割。
在 Adaboost 中,样本权重是展示样本重要性的很好的指标。但在梯度提升决策树(GBDT)中,
并没有天然的样本权重,因此 Adaboost 所使用的采样方法在这里就不能直接使用了,这时我们就需要
基于梯度的采样方法。
梯度表征损失函数切线的倾斜程度,所以自然推理到,如果在某些意义上数据点的梯度非常大,那么这些
样本对于求解最优分割点而言就非常重要,因为算其损失更高。
GOSS 保留所有的大梯度样例,并在小梯度样例上采取随机抽样。比如,假如有 50 万行数据,其中
1 万行数据的梯度较大,那么我的算法就会选择(这 1 万行梯度很大的数据+x% 从剩余 49 万行中
随机抽取的结果)。如果 x 取 10%,那么最后选取的结果就是通过确定分割值得到的,从 50 万行中
抽取的 5.9 万行。
在这里有一个基本假设:如果训练集中的训练样例梯度很小,那么算法在这个训练集上的训练误差就会
很小,因为训练已经完成了。
为了使用相同的数据分布,在计算信息增益时,GOSS 在小梯度数据样例上引入一个常数因子。因此,
GOSS 在减少数据样例数量与保持已学习决策树的准确度之间取得了很好的平衡。
2.2、LightGBM的优势
CatBoost是一种能够很好处理类别特征的梯度提升算法,所谓的类别特征是这类特征不是数值型特征,而是离散型特征,比如性别(男女),天气(雨、阴、晴等)。在其他的梯度提升算法中对于类别特征一般采用one-hot encoder或者label encoder方法将类别特征转化为数值特征。
CatBoost 与其它增强学习算法的一个主要区别是,CatBoost 实现了对称树。CatBoost 训练速度快,它的性能可能会优于其它增强学习算法,如果数据集中的大多数特征都是分类特征,那么CatBoost 是一个很好的选择;
CatBoost 可赋予分类变量指标,进而通过独热最大量得到独热编码形式的结果(独热最大量:在所有特征上,对小于等于某个给定参数值的不同的数使用独热编码)。如果在 CatBoost 语句中没有设置「跳过」,CatBoost 就会将所有列当作数值变量处理;
注意,如果某一列数据中包含字符串值,CatBoost 算法就会抛出错误。另外,带有默认值的 int 型变量也会默认被当成数值数据处理。在 CatBoost 中,必须对变量进行声明,才可以让算法将其作为分类变量处理。只需告诉CatBoost算法哪些特征是类别特征,他会自动把类别特征转化为数值特征;
CatBoost的两大优势:第一、在训练过程中处理类别型特征,而不是在特征预处理阶段处理类别特征;第二、选择树结构时,CatBoost选择对称树作为基学习器,有助于减少预测时间,可以避免过拟合。
另外,CatBoost对数据集进行随机排序,CatBoost算法还提供了非常炫酷的训练可视化功能;
使用了 2015 年航班延误的 Kaggle 数据集,其中同时包含分类变量和数值变量。这个数据集中一共有约 500 万条记录,因此很适合用来同时评估比较三种 boosting 算法的训练速度和准确度。我使用了 10% 的数据:50 万行记录。
数据下载地址
以下是建模使用的特征:
4.1、数据处理
import pandas as pd, numpy as np, time
from sklearn.model_selection import train_test_split
data = pd.read_csv("flights.csv")
data = data.sample(frac = 0.1, random_state=10)
data = data[["MONTH","DAY","DAY_OF_WEEK","AIRLINE","FLIGHT_NUMBER","DESTINATION_AIRPORT",
"ORIGIN_AIRPORT","AIR_TIME", "DEPARTURE_TIME","DISTANCE","ARRIVAL_DELAY"]]
data.dropna(inplace=True)
data["ARRIVAL_DELAY"] = (data["ARRIVAL_DELAY"]>10)*1
cols = ["AIRLINE","FLIGHT_NUMBER","DESTINATION_AIRPORT","ORIGIN_AIRPORT"]
for item in cols:
data[item] = data[item].astype("category").cat.codes +1
train, test, y_train, y_test = train_test_split(data.drop(["ARRIVAL_DELAY"], axis=1), data["ARRIVAL_DELAY"],random_state=10, test_size=0.25)
4.2、XGBoost部分代码
import xgboost as xgb from sklearn import metrics
def auc(m, train, test):
return (metrics.roc_auc_score(y_train,m.predict_proba(train)[:,1]),
metrics.roc_auc_score(y_test,m.predict_proba(test)[:,1]))
# Parameter Tuning
model = xgb.XGBClassifier()
param_dist = {"max_depth": [10,30,50],
"min_child_weight" : [1,3,6],
"n_estimators": [200],
"learning_rate": [0.05, 0.1,0.16],}
grid_search = GridSearchCV(model, param_grid=param_dist, cv = 3,
verbose=10, n_jobs=-1)
grid_search.fit(train, y_train)
grid_search.best_estimator_
model = xgb.XGBClassifier(max_depth=50, min_child_weight=1, n_estimators=200,\
n_jobs=-1 , verbose=1,learning_rate=0.16)
model.fit(train,y_train)
auc(model, train, test)
4.3、LighGBM部分代码
import lightgbm as lgb
from sklearn import metrics
def auc2(m, train, test):
return (metrics.roc_auc_score(y_train,m.predict(train)),
metrics.roc_auc_score(y_test,m.predict(test)))
lg = lgb.LGBMClassifier(silent=False)
param_dist = {"max_depth": [25,50, 75],
"learning_rate" : [0.01,0.05,0.1],
"num_leaves": [300,900,1200],
"n_estimators": [200]
}
grid_search = GridSearchCV(lg, n_jobs=-1, param_grid=param_dist, cv = 3, scoring="roc_auc", verbose=5)
grid_search.fit(train,y_train)
grid_search.best_estimator_
d_train = lgb.Dataset(train, label=y_train)
params = {"max_depth": 50, "learning_rate" : 0.1, "num_leaves": 900, "n_estimators": 300}
# Without Categorical Features
model2 = lgb.train(params, d_train)
auc2(model2, train, test)
#With Catgeorical Features
cate_features_name = ["MONTH","DAY","DAY_OF_WEEK","AIRLINE","DESTINATION_AIRPORT",
"ORIGIN_AIRPORT"]
model2 = lgb.train(params, d_train, categorical_feature = cate_features_name)
auc2(model2, train, test)
4.4、CatBoost部分代码
在对 CatBoost 调参时,很难对分类特征赋予指标。因此,我同时给出了不传递分类特征时的调参结果,并评估了两个模型:一个包含分类特征,另一个不包含。我单独调整了独热最大量,因为它并不会影响其他参数。
import catboost as cb
cat_features_index = [0,1,2,3,4,5,6]
def auc(m, train, test):
return (metrics.roc_auc_score(y_train,m.predict_proba(train)[:,1]),
metrics.roc_auc_score(y_test,m.predict_proba(test)[:,1]))
params = {'depth': [4, 7, 10],
'learning_rate' : [0.03, 0.1, 0.15],
'l2_leaf_reg': [1,4,9],
'iterations': [300]}
cb = cb.CatBoostClassifier()
cb_model = GridSearchCV(cb, params, scoring="roc_auc", cv = 3)
cb_model.fit(train, y_train)
With Categorical features
clf = cb.CatBoostClassifier(eval_metric="AUC", depth=10, iterations= 500, l2_leaf_reg= 9, learning_rate= 0.15)
clf.fit(train,y_train)
auc(clf, train, test)
With Categorical features
clf = cb.CatBoostClassifier(eval_metric="AUC",one_hot_max_size=31, \
depth=10, iterations= 500, l2_leaf_reg= 9, learning_rate= 0.15)
clf.fit(train,y_train, cat_features= cat_features_index)
auc(clf, train, test)
4.5、模型评估
为了评估模型,我们应该同时考虑模型的速度和准确度表现。
请记住,CatBoost 在测试集上表现得最好,测试集的准确度最高(0.816)、过拟合程度最小(在训练集和测试集上的准确度很接近)以及最小的预测和调试时间。但这个表现仅仅在有分类特征,而且调节了独热最大量时才会出现。如果不利用 CatBoost 算法在这些特征上的优势,它的表现效果就会变成最差的:仅有 0.752 的准确度。因此我们认为,只有在数据中包含分类变量,同时我们适当地调节了这些变量时,CatBoost 才会表现很好。
第二个使用的是 XGBoost,它的表现也相当不错。即使不考虑数据集包含有转换成数值变量之后能使用的分类变量,它的准确率也和 CatBoost 非常接近了。但是,XGBoost 唯一的问题是:它太慢了。尤其是对它进行调参,非常令人崩溃(我用了 6 个小时来运行 GridSearchCV——太糟糕了)。更好的选择是分别调参,而不是使用 GridSearchCV。
最后一个模型是 LightGBM,这里需要注意的一点是,在使用 CatBoost 特征时,LightGBM 在训练速度和准确度上的表现都非常差。我认为这是因为它在分类数据中使用了一些修正的均值编码方法,进而导致了过拟合(训练集准确率非常高:0.999,尤其是和测试集准确率相比之下)。但如果我们像使用XGBoost 一样正常使用 LightGBM,它会比 XGBoost 更快地获得相似的准确度,如果不是更高的话(LGBM—0.785, XGBoost—0.789)。
最后必须指出,这些结论在这个特定的数据集下成立,在其他数据集中,它们可能正确,也可能并不正确。但在大多数情况下,XGBoost 都比另外两个算法慢。