from sklearn.cluster import KMeans
KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,precompute_distances='auto',verbose=0,random_state=None,copy_x=True,n_jobs=1,algorithm='auto')
#n_clusters:class的个数;
#max_inter:每一个初始化值下,最大的iteration次数;
#n_init:尝试用n_init个初始化值进行拟合;
#tol:within-cluster sum of square to declare convergence;
#init=‘k-means++’:可使初始化的centroids相互远离;
算法要点:
1、将training data (X)分为k clusters;
2、object function:
3、缺陷:
1)KMeans假设clusters是convex or isotropics;他不能很好的拟合elongated clusters or manifolds with irregular shape;
2)欧几里得距离会随着特征数量的增加(dimension),而变得越来越膨胀;从而影响模型收敛。针对这一问题,一个好的解决方法是:可以利用PCA等降维工具先将data的特征数目降低在可接受的范围内,然后在计算其欧几里得距离;
3)initial centroids选择不慎,可能会使模型convergence to local minimum;利用KMeans的参数init=‘k-means++’,可以使initial centroids相互远离,从而使模型收敛到一个更好的结果。
from sklearn.cluster import MiniBatchKMeans(n_clusters=8,init='k-means++',max_iter=100,batch-size=100,verbose=0,compute_labels=True,random_state=None,tol=0.0,max_no_improvement=10,init_size=None,n_init=3,reassignment_ration=0.01)
#n_clusters: class数量;
#batch_size:用来拟合KMeans的subset size;
#compute_labels=True:将在batch_size上的拟合结果应用到整个data;
#tol:目标函数变化值#max_no_improvement:当max_no_improvement个batchset停止迭代时,给出最终的模型拟合结果;
算法要点:
相比标准的KMeans算法,MiniBatchKMeans是在subset进行模型拟合;其拟合效果比标准的KMeans算法略差(差别较小);但是MiniBatchKMeans的收敛速度要快于KMeans;
from sklearn.cluster import AffinityPropagation
AffinityPropagation(damping=0.5,max_iter=200,convergence_iter=15,copy=True,preference=None,affinity='euclidean',verbose=False)
#damping:减振因子,用来避免在iteration中r,a的来回震荡;
#preference???
#convergence_iter:在estimated cluster数量不变后,还要进行的iteration次数;
#affinity:用来估计样本之间亲密度的函数:{precomputed,euclidean},{事先定义,欧几里得}
算法要点:
1)工作原理:
AffinityPropagation不需要在运行算法前确定聚类的个数;AffinityPropagation的要旨是选择exampler(data中实际存在的点),用来代表data(exampler的初始化主要是通过preference设定的);
在算法中,exampler的选择主要是通过两个函数进行的:responsibility r(i,k):the responsiblity of sample k to be the exampler of sample i,availability a(i,k):the availability of sample k to be the exampler of sample i;
在算法开始时,将r(i,k)和a(i,k)均设为0,iteration,直到r,a都达到收敛;为了减小r,a在iteration中的震荡,可以引入减振因子(可用damping参数实现);
2)缺陷:算法时间复杂度和空间复杂度均很高;
3)相关公式:
4)参考博文
from sklearn.cluster import MeanShift
MeanShift(bandwidth=None,seeds=None,bin_seeding=False,min_bin_freq=1,cluster_all=True,n_jobs=1)
算法要点:
1)缺陷:由于算法运行过程中需要多次计算最近邻points,因此,该算法的可扩展性不高;estimate_bandwidth function,相比MeanShift算法具有更低的可扩展性,因此,如果在MeanShift算法中引入estimate_bandwidth,将进一步限值MeanShift的使用;
2)参考博文:
MeanShift聚类算法
MeanShift算法介绍
from sklearn.cluster import SpectralClustering(n_clusters=8,eigen_solver=None,random_state=None,n_init=10,gamma=1.0,affinity='rbf',n_neighbors=10,eigen_tol=0.0,assign_labels='kmeans',degree=3,coef0=1,kernel_params=None,n_jobs=1)
#n_clusters:聚类的个数;
#eigen_solver:使用的特征值分解策略;
#gamma:计算相似矩阵时,如果使用核函数,该核函数的系数;
#affinity:计算相似度时使用的距离公式;
#n_neighbors:利用k近邻方法构建邻接矩阵时,所使用的k近邻;
#eigen_tol:Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver.
#assign_labels:通过求解“拉普拉斯矩阵特征值”,获得指示向量矩阵(类似于降维后的特征),在指示向量矩阵的基础上,对矩阵各行,运用assign_labels进行聚类;取值:{kmeans,discretize};
#degree:Degree of the polynomial kernel. Ignored by other kernels;
#coef0:Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.
#kernel_params:Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels.
#n_jobs:The number of parallel jobs to run. If -1, then the number of jobs is set to the number of CPU cores.
算法要点:
1)优点:
谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到;
由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。
2)缺点:
如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。
聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。
3)参考博文:
谱聚类原理总结
谱聚类及其实现详解
from sklearn.cluster import AgglomerativeClustering
AgglomerativeClustering(n_clusters=2,affinity='euclidean',memory=None,connectivity=None,compute_full_tree='auto',linkage='ward',pooling_func=)
#affinity:距离计算公式:{eucidean,l1,l2,cosine,manhattan,precomputed}
#memory:是否要缓冲;
#connectivity:是否设定connectivity matrix;
#compute_full_tree:是否要进行完全聚类;
#linkage:进行聚类的标准:{ward,complete,average}
算法要点:
1)将两个不同的类进行融合的标准有3:
ward:minimizes the sum of squared differences within all clusters;
complete:minimizes the maximum distance between observations of pairs of clusters;
average:minimizes the average of the distances between all observations of pairs of clusters.
note that:Agglomerative cluster 可能会导致各个cluster间大小的不均衡;complete 能够导致非常不均衡簇的产生,相比而言 ward 可以产生相对均衡的簇,但是,ward只能采用欧几里得距离公式,不能使用其他的距离公式,因此,如果要用其他的距离公式进行聚类,可使用 average 策略。
2)在算法中引入connectivity matrix 不仅可以将算法应用于更大的数据集,而且可以禁止聚类在特定的subset之间发生,如下图,可保证聚类不在各个folds间发生:
3)度量两点之间距离的公式:{l1,l2,manhattan,cosine,ecludiean}
l1 :比较实用于稀疏矩阵;
cosine :对于数据全局的缩放,可以保持距离不变;
from sklearn.cluster import DBSCAN
DBSCAN(eps=0.5,min_samples=5,metric='euclidean',mtric_params=None,algorithm='auto',leaf_size=30,p=None,n_jobs=1)
#eps:对象半径;
#min_samples:一个核心对象应该拥有的最少sample数;
#metric:计算样本之间距离的公式;{precomputed,callable}
#algorithm:用来找最近邻样本点算法{'auto','ball_tree','ke_tree'}
#leaf_size:kd_tree或ball_tree中的叶子节点数;决定了搜索快慢;
算法要点:
1)对于给定ordered data,其多次运用该算法的聚类结果相同,但是,对于不同order的同一data,可能会得到不同的结果;
2)如果一个data中重复value较多,可以做成稀疏矩阵,将各个数据根据其重复度设定一个weight,进而,在用DBSCAN拟合数据;
3)参考博文:DBSCAN简介
from sklearn.cluster import Birch
Birch(threshold=0.5,branching_factor=50,n_clusters=3,compute_labels=True,copy=True)
#threshold:subcluster的半径,如果某一样本点的加入,使subcluster半径超过这个值,则该样本会被分到其它的subcluster;
#branching_factor:每个node拥有的CF个数,如果新加入的CF使node中的CF数超过设定值,则将该Node一分为二;
#n_clusters:想要得到的cluster数量;如果n_cluster=None,则输出叶子结点中所有CF;如果n_cluster= int,则将叶子节点中的CF再次进行聚类;如果n_cluster=instance of sklearn.cluster.model,则将叶子节点中的CF看作new data,利用该model进行聚类;
#copy=False:将overwritten data;
#compute_labels=True:计算所有data sample的label;
算法要点:
1)优点:
节约内存,所有的样本都在磁盘上,CF Tree仅仅存了CF节点和对应的指针。
聚类速度快,只需要一遍扫描训练集就可以建立CF Tree,CF Tree的增删改都很快。
可以识别噪音点,进行异常点检测,还可以对数据集进行初步分类的预处理,降低数据实例数量;
Birch和MiniBatch一样,都使用与数据量较大的情况,但是,MiniBatch适用于类别数较少或中等的情况,而Birch使用与类别数较大的情况;
2)缺点:
由于CF Tree对每个节点的CF个数有限制,导致聚类的结果可能和真实的类别分布不同.
对高维特征的数据聚类效果不好。当n_feature > 20时,此时可以选择Mini Batch K-Means。
如果数据集的分布簇不是类似于超球体,或者说不是凸的,则聚类效果不好。
3)参考博文:BIRCH聚类算法原理
clustering performance evaluation
from sklearn import metrics
metrics.adjusted_rand_score(labels_true,labels_pred)
metrics.adjuested_mutual_info_score(labels_true,labels_pred)
metrics.homogeneity_score(labels_true,labels_pred)
metrics.completeness_score(labels_true,labels_pred)
metrics.v_measure_score(labels_true,labels_pred)
metrics.homogeneity_completeness_v_measure(labels_true,labels_pred)
metrics.fowlkes_mallows_score(labels_true,labels_pred)
metrics.silhouette_score(X,labels,metric='euclidean')
metrics.calinski_harabaz_score(X,labels)
参考文献:Clustering
Biclustering 简介
Biclustering同时对rows和columns进行聚类,每一个cluster(rows,columns)被叫做一个bicluster,在聚类的过程中,会重新排列data matrix的rows和columns;比如,一个data matrix(10,10),通过Biclustering,可能会形成一个(3,2)的bicluster(submatrix);
sklearn.cluster.bicluster中有两种biclustering的function:
SpectralBiclustering
sklearn.cluster.bicluster.SpectralBiclustering(n_clusters=3,method='bistochastic',n_components=6,n_best=3,svd_method='randomized',n_svd_vecs=None,mini_batch=False,init='k-means++',n_init=10,n_jobs=1,random_state=None)
该algorithm形成的是一个hidden checkboard structure biclusters,每一个checkboard内各个点的值几乎相同,因此,该checkboard structure提供了一个对原data的近似;
checkboard structure如下图所示:
SpectralCoclustering
sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3,svd_method='randomized',n_svd_vecs=None,mini_batch=False,init='k-means++',n_init=10,n_jobs=1,random_state=None)
该algorithm形成的是一个diagonal structure,diagonal上的每一个bicluster代表了data matrix中的high values。此算法通过对data matrix gaph进行归一化,从而找到数据图中的heavy subgraph(The algorithm approximates the normalized cut of this graph to find heavy subgraphs.)其结构如下图所示:
---------------------
作者:Wbq_Zero
来源:CSDN
原文:https://blog.csdn.net/u014765410/article/details/82784885
版权声明:本文为博主原创文章,转载请附上博文链接!