# -*- coding: utf-8 -*-
import datetime
from keras.models import Model
from keras.layers import *
from keras.preprocessing.image import ImageDataGenerator
def Xception(input_shape=(299, 299, 3), classes=1000):
img_input = Input(shape=input_shape)
x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input)
x = BatchNormalization(name='block1_conv1_bn')(x)
x = Activation('relu', name='block1_conv1_act')(x)
x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
x = BatchNormalization(name='block1_conv2_bn')(x)
x = Activation('relu', name='block1_conv2_act')(x)
residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
x = BatchNormalization(name='block2_sepconv1_bn')(x)
x = Activation('relu', name='block2_sepconv2_act')(x)
x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
x = BatchNormalization(name='block2_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x)
x = add([x, residual])
residual = Conv2D(256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = Activation('relu', name='block3_sepconv1_act')(x)
x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
x = BatchNormalization(name='block3_sepconv1_bn')(x)
x = Activation('relu', name='block3_sepconv2_act')(x)
x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
x = BatchNormalization(name='block3_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x)
x = add([x, residual])
residual = Conv2D(728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = Activation('relu', name='block4_sepconv1_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
x = BatchNormalization(name='block4_sepconv1_bn')(x)
x = Activation('relu', name='block4_sepconv2_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
x = BatchNormalization(name='block4_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x)
x = add([x, residual])
for i in range(8):
residual = x
prefix = 'block' + str(i + 5)
x = Activation('relu', name=prefix + '_sepconv1_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x)
x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
x = Activation('relu', name=prefix + '_sepconv2_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x)
x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
x = Activation('relu', name=prefix + '_sepconv3_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x)
x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)
x = add([x, residual])
residual = Conv2D(1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = Activation('relu', name='block13_sepconv1_act')(x)
x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
x = BatchNormalization(name='block13_sepconv1_bn')(x)
x = Activation('relu', name='block13_sepconv2_act')(x)
x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
x = BatchNormalization(name='block13_sepconv2_bn')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x)
x = add([x, residual])
x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
x = BatchNormalization(name='block14_sepconv1_bn')(x)
x = Activation('relu', name='block14_sepconv1_act')(x)
x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
x = BatchNormalization(name='block14_sepconv2_bn')(x)
x = Activation('relu', name='block14_sepconv2_act')(x)
x = GlobalAveragePooling2D(name='avg_pool')(x)
if classes == 2:
x = Dense(1, activation='sigmoid', name='predictions')(x)
else:
x = Dense(classes, activation='softmax', name='predictions')(x)
# Create model.
model = Model(img_input, x, name='xception')
return model
def main():
width = 299
height = 299
batch_size = 4
generator = ImageDataGenerator(horizontal_flip=True,
vertical_flip=True,
validation_split=0.2)
train_generator = generator.flow_from_directory(directory="datasets/train",
target_size=(width, height),
batch_size=batch_size,
class_mode="binary",
subset="training")
val_generator = generator.flow_from_directory(directory="datasets/train",
target_size=(width, height),
batch_size=batch_size,
class_mode="binary",
subset="validation")
model = Xception(classes=2)
model.summary()
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit_generator(train_generator, validation_data=val_generator, epochs=10, verbose=1)
if __name__ == '__main__':
tic = datetime.datetime.now()
main()
toc = datetime.datetime.now()
print("\nThis model took ", (toc - tic))