Tensorflow学习(4)池化层和全连接层

池化层定义在 tensorflow/python/layers/pooling.py.

有最大值池化和均值池化。

  1. tf.layers.max_pooling2d
max_pooling2d(
    inputs,
    pool_size,
    strides,
    padding='valid',
    data_format='channels_last',
    name=None,
)
  • inputs:进行池化的数据。
  • pool_size:池化的核大小(pool_height,pool_width),如[3,3]。如果长宽相等,也可以设置一个数,如pool_size=3。
  • strides:池化的滑动步长。可以设置为[1,1]这样的两个整数,也可以直接设置为一个数如strides=2。
  • padding:边缘填充。’same‘和’valid‘选其一。默认后者。
  • data_format:输入数据格式。默认为channels_last。
  • name:层的名字。
    例如:
pool1=tf.layers.max_pooling2d(inputs=x,pool_size=[2,2],strides=2)

一般是放在卷积层之后,例如:

conv=tf.layers.conv2d(
      inputs=x,
      filters=32,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)
pool=tf.layers.max_pooling2d(inputs=conv, pool_size=[2, 2], strides=2)
  1. tf.layers.average_pooling2d
average_pooling2d(
    inputs,
    pool_size,
    strides,
    padding='valid',
    data_format='channels_last',
    name=None
)

参数和前面的最大值池化一样。


全连接dense层定义在 tensorflow/python/layers/core.py.

  1. tf.layers.dense
dense(
    inputs,
    units,
    activation=None,
    use_bias=True,
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    trainable=True,
    name=None,
    reuse=None
)
  • inputs: 输入数据,2维tensor.
  • units: 该层的神经单元结点数。
  • activation: 激活函数.
  • use_bias: Boolean型,是否使用偏置项.
  • kernel_initializer: 卷积核的初始化器.
  • bias_initializer: 偏置项的初始化器,默认初始化为0.
  • kernel_regularizer: 卷积核化的正则化,可选.
  • bias_regularizer: 偏置项的正则化,可选.
  • activity_regularizer: 输出的正则化函数.
  • trainable: Boolean型,表明该层的参数是否参与训练。如果为真则变量加入到图集合中 GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
  • name: 层的名字.
  • reuse: Boolean型, 是否重复使用参数.
    全连接层执行操作 outputs = activation(inputs.kernel + bias)

如果执行结果不想进行激活操作,则设置activation=None。

例:

#全连接层
dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu)
dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu)
logits= tf.layers.dense(inputs=dense2, units=10, activation=None)

也可以对全连接层的参数进行正则化约束:

dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu,kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))

你可能感兴趣的:(Python,函数)