官方预训练模型调用代码:https://github.com/pytorch/vision/tree/master/torchvision/models
官方文档地址 :https://pytorch.org/docs/master/torchvision/models.html
AlexNet
model_urls = {
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}
VGG
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
ResNet
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
ResNeXt
model_urls = {
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'resnext101_32x16d': 'https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth'
}
Wide ResNet
model_urls = {
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'
}
SqueezeNet
model_urls = {
'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
}
DenseNet
model_urls = {
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}
Inception v3
model_urls = {
## Inception v3 ported from TensorFlow
'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',
}
GoogLeNet
model_urls = {
# GoogLeNet ported from TensorFlow
'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
}
ShuffleNet v2
model_urls = {
'shufflenetv2_x0.5': 'https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth',
'shufflenetv2_x1.0': 'https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth',
'shufflenetv2_x1.5': None,
'shufflenetv2_x2.0': None,
}
MobileNet v2
model_urls = {
'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
}
MNASNet
_MODEL_URLS = {
"mnasnet0_5":
"https://download.pytorch.org/models/mnasnet0.5_top1_67.823-3ffadce67e.pth",
"mnasnet0_75": None,
"mnasnet1_0":
"https://download.pytorch.org/models/mnasnet1.0_top1_73.512-f206786ef8.pth",
"mnasnet1_3": None
}
FCN ResNet50, ResNet101
model_urls = {
'fcn_resnet50_coco': 'https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth',
'fcn_resnet101_coco': 'https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth'
}
DeepLabV3 ResNet50, ResNet101
model_urls = {
'deeplabv3_resnet50_coco': 'https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth',
'deeplabv3_resnet101_coco': 'https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth'
}
Faster R-CNN ResNet-50 FPN
model_urls = {
'fasterrcnn_resnet50_fpn_coco':
'https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth',
}
Mask R-CNN ResNet-50 FPN
model_urls = {
'maskrcnn_resnet50_fpn_coco':
'https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth',
}
Keypoint R-CNN ResNet-50 FPN
model_urls = {
# legacy model for BC reasons, see https://github.com/pytorch/vision/issues/1606
'keypointrcnn_resnet50_fpn_coco_legacy':
'https://download.pytorch.org/models/keypointrcnn_resnet50_fpn_coco-9f466800.pth',
'keypointrcnn_resnet50_fpn_coco':
'https://download.pytorch.org/models/keypointrcnn_resnet50_fpn_coco-fc266e95.pth',
}
ResNet 3D
model_urls = {
## ResNet 3D
'r3d_18': 'https://download.pytorch.org/models/r3d_18-b3b3357e.pth'
}
ResNet Mixed Convolution
model_urls = {
## ResNet Mixed Convolution
'mc3_18': 'https://download.pytorch.org/models/mc3_18-a90a0ba3.pth'
}
ResNet (2+1)D
model_urls = {
## ResNet (2+1)D
'r2plus1d_18': 'https://download.pytorch.org/models/r2plus1d_18-91a641e6.pth'
}
import torchvision.models as models
## 如果只需要网络结构,不需要用预训练模型的参数来初始化,pretrained=False:
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet = models.mobilenet_v2(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
fcn_resnet50 = torchvision.models.segmentation.fcn_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None)
fcn_resnet101 = torchvision.models.segmentation.fcn_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None)
deeplabv3_resnet50 = torchvision.models.segmentation.deeplabv3_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None)
deeplabv3_resnet101 = torchvision.models.segmentation.deeplabv3_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None)
fasterrcnn_resnet50_fpn = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=3)
maskrcnn_resnet50_fpn = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True)
keypointrcnn_resnet50_fpn = torchvision.models.detection.keypointrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=2, num_keypoints=17, pretrained_backbone=True)
r3d_18 = torchvision.models.video.r3d_18(pretrained=False, progress=True)
完整调用代码请移步一>官方预训练模型调用代码
完整理解代码请移步一>官方文档地址