- Python学习Day14
m0_64472246
python学习开发语言
学习来源:@浙大疏锦行SHAP(SHapleyAdditiveexPlanations)库是一个用于解释机器学习模型预测结果的开源Python库。**一、核心概念**1.**Shapley值***它来源于合作博弈论。在机器学习模型解释的语境下,可以这样理解:对于一个模型的预测结果,每个特征都看作是一个“玩家”,模型的输出是这些“玩家”合作的结果。Shapley值表示每个特征对预测结果的平均边际贡献
- 博弈论概述
C7211BA
博弈论
博弈论(GameTheory)是研究理性决策者在策略互动中如何行动和决策的数学理论。它广泛应用于经济学、政治学、生物学、计算机科学等领域。以下是博弈论的主要思想和核心概念:1.核心思想博弈论的核心是分析多个参与者(玩家)在相互依赖的情境中如何做出最优决策,即每个人的收益不仅取决于自己的选择,还取决于他人的选择。主要特点包括:策略互动:玩家的决策相互影响。理性假设:玩家追求自身利益最大化(理性人假设
- python训练day14 shap图绘制
小暖星
python训练python开发语言人工智能
SHAP原理目标:理解复杂机器学习模型(尤其是“黑箱”模型,如随机森林、梯度提升树、神经网络等)为什么会对特定输入做出特定预测。SHAP提供了一种统一的方法来解释模型的输出。核心思想:合作博弈论中的Shapley值SHAP(SHapleyAdditiveexPlanations)的核心基于博弈论中的Shapley值概念。想象一个合作游戏:1.玩家(Players)::模型的特征(Features)
- 搜索引擎蜘蛛的智能抓取策略:技术解构与动态博弈的深层逻辑
我爱学习558
搜索引擎蜘蛛2搜索引擎pythonjavascript
搜索引擎蜘蛛的抓取过程远非简单的页面下载,而是一场融合了计算机科学、博弈论和信息经济学的复杂系统工程。其技术实现中暗藏着搜索引擎对网络空间认知范式的根本性转变。###一、多模态解析引擎的量子化演进现代蜘蛛的解析引擎已突破传统HTML解析的局限,形成多模态感知架构:**1.时空感知型解析器**-**视觉权重建模**:通过卷积神经网络(CNN)分析页面视觉热区,将首屏内容权重提升37%-**交互深度预
- 井字棋 AI-Python
1.介绍程序中的算法:MinMax算法,也称为极小化极大算法,是一种在博弈论中广泛应用的算法,用于在两个竞争者之间进行零和博弈时,找出最优策略。该算法适用于井字棋、象棋等游戏,旨在为玩家提供最佳决策。其基本思想是假设对手不会犯错误,从而在最坏情况下保证自己的最大利益。Minimax算法的核心在于构建一个博弈树,这个树展示了所有可能的游戏状态和双方的决策路径。每个节点代表一种游戏状态,边代表从一种状
- 双生算法:栈与队列的时空博弈论
司铭鸿
算法java开发语言职场和发展生活哈希算法
凌晨三点的硅谷,工程师Alex同时收到两条警报:游戏服务器因星号解析崩溃,支付系统因请求洪峰瘫痪。当他发现两个看似无关的故障竟能用同一套数据结构思想解决时,咖啡杯在半空凝固——原来算法世界存在着如此精妙的镜像对称...正文一、星号消除:栈的完美狩猎场给定一个包含若干星号*的字符串s,在一步操作中,可以选择一个星号,移除其左侧最近的非星号字符,并移除该星号自身。返回移除所有星号后的字符串。问题本质:
- 图解GAN:生成对抗网络的原理与代码实现
layneyao
ai生成对抗网络人工智能神经网络
图解GAN:生成对抗网络的原理与代码实现系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录图解GAN:生成对抗网络的原理与代码实现摘要引言1.GAN基础原理与数学推导1.1博弈论视角1.2训练流程图1.3原始GAN代码实现(PyTorch)2.GAN经典变体解析2.1DCGAN:卷积化GAN2.2WGAN:Wasserstein距离替代JSD2.3C
- 数学建模之入门篇
沐硕
计算机专业基础数学建模软件工程
目录什么是数学建模建模、编程、写作一、初步建模选择模型二、进阶熟练掌握1.数学模型线性规划图与网络模型及方法插值与拟合灰色预测动态规划层次分析法AHP整数规划目标规划模型偏最小二乘回归微分方程模型博弈论/对策论排队论模型存储论模糊数学模型2.统计模型3.机器学习/数据挖掘模型4.深度学习模型三.模型求解与优化一、团队篇,组建你的团队二、工具篇,提高你的效率三、建模篇,怎么建模三、零碎的知识点篇如何
- 基于深度学习的多智能体系统:AI人工智能前沿技术解析
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶人工智能深度学习ai
基于深度学习的多智能体系统:AI人工智能前沿技术解析关键词:深度学习、多智能体系统、强化学习、分布式算法、博弈论、协作机制、智能决策摘要:本文深入解析基于深度学习的多智能体系统(MAS)核心技术,涵盖架构设计、算法原理、数学模型及实战应用。通过融合深度学习的表征能力与多智能体系统的协作机制,揭示复杂场景下智能体的交互决策原理。结合博弈论、强化学习等理论,构建分布式协同框架,并通过具体代码案例演示多
- Day 14 训练
Nina_717
python打卡训练营python
Day14训练SHAP(SHapleyAdditiveexPlanations)1.创建解释器2.将特征贡献可视化第一部分:绘制SHAP特征重要性条形图第二部分:绘制SHAP特征重要性蜂巢图SHAP(SHapleyAdditiveexPlanations)旨在解释复杂机器学习模型(如随机森林、梯度提升树、神经网络等“黑箱”模型)对特定输入的预测原因。其核心基于合作博弈论中的Shapley值。将模型
- 【蓝桥杯】 高僧斗法 (C++)(博弈论问题)
@江上雨
在解决高僧斗法(博弈论问题)之前我们要了解下什么是***平等组合游戏***1.平等组合游戏两人游戏。两人轮流走步。有一个状态集,而且通常是有限的。有一个终止状态,到达终止状态后游戏结束。游戏可以在有限的步数内结束。规定好了哪些状态转移是合法的。所有规定对于两人是一样的。2.当确定这是一个平等组合游戏的问题之后,我们就可以使用博弈论的结论来解决了。在解决这个问题之前,我们通过一个经典的博弈论问题来看
- 蓝桥杯-算法提高(博弈论):高僧斗法(尼姆博奕-奇异局势)
QiaoXz_CN
Java蓝桥杯-算法提高NIMJava
问题描述:问题描述古时丧葬活动中经常请高僧做法事。仪式结束后,有时会有“高僧斗法”的趣味节目,以舒缓压抑的气氛。节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠)。又有若干小和尚随机地“站”在某个台阶上。最高一级台阶必须站人,其它任意。(如图1所示)两位参加游戏的法师分别指挥某个小和尚向上走任意多级的台阶,但会被站在高级台阶上的小和尚阻挡,不能越过。两个小和尚也不能站在
- 第16届蓝桥杯备赛
起不来名字明天再换
算法深度优先蓝桥杯
第一题异或运算(1)^=//是按位异或赋值运算符。相同位得0,不同位得1.a=2,b=1,c=a^b;c=3;(2)注意:每次操作时都可以选择对Alice或者Bob操作。无论操作的人是谁。(3)思路:最终结果的判断从二进制的高位开始。高位为1者胜。每次异或,只观察翻转的从高到低的某一位。异或的特征:0和a异或为a,1和a异或a翻转。本题就属于博弈论的问题。(4)博弈论的特征:回合制;有限步终止;胜
- 第十二届蓝桥杯 2021年省赛真题 (Java 大学A组) 第一场
肖有量
java蓝桥杯算法
蓝桥杯2021年省赛真题(Java大学A组)#A相乘朴素解法同余方程#B直线直线方程集合分式消除误差平面几何#C货物摆放暴力搜索缩放质因子#D路径搜索单源最短路径#E回路计数记忆化搜索#F最少砝码变种三进制#G左孩子右兄弟树形DP#H异或数列博弈论#I双向排序去冗操作填数游戏ChthollyTree#J分果果动态规划Placeholder#A相乘本题总分:555分问题描述 小蓝发现,他将111至
- 语言策略的博弈论新境界:从对话到平衡——大语言模型的博弈解构与前瞻
步子哥
AGI通用人工智能语言模型人工智能自然语言处理
在人工智能日新月异的发展中,我们常见到一台台大语言模型(LLM)在聊天、问答与创作中大放异彩。然而,在这些机智回答的背后,却隐藏着一个尚未充分挖掘的秘密:对话不仅仅是文字的堆砌,更是一场复杂的多主体战略博弈。最新研究《StatesasStringsasStrategies:SteeringLanguageModelswithGame-TheoreticSolvers》正是尝试将对话过程映射为博弈论
- 【人工智能】博弈搜索(极小极大值、α-β剪枝)
zjx...
机器学习深度学习人工智能
1.极小极大值算法 人工智能中“博弈”通常专指博弈论专家们称为有完整信息的、确定性的、轮流行动的、两个游戏者的零和游戏(如国际象棋)。术语中,这是指在确定的、完全可观察的环境中两个Agent必须轮流行动,在游戏结束时效用值总是相等并且符号相反。例如下国际象棋,一个棋手贏了,则对手一定是输了。正是Agent之间效用函数的对立导致了环境是对抗的。博弈的游戏通常被AI作为一个好的问题来进行研究主要是因
- 实战--SHAP机器学习黑箱解释模型
SsummerC
机器学习机器学习人工智能
模型介绍SHAP(SHapleyAdditiveexPlanation,沙普利加和解释)是由经济学家LloydShapley提出的博弈论概念,属于模型事后解释的方法。它的核心思想是计算特征对模型输出的边际贡献,再从全局和局部两个层面对“黑盒模型”进行解释。SHAP实际是将输出值归因到每一个特征的shapely值上,换句话说,就是计算每一个特征的shapley值,依此来衡量特征对最终输出值的影响。实
- 蓝桥杯python练习第十四天|蛋糕游戏
xiongmaodaxia_z7
python蓝桥杯小白游戏蓝桥杯算法python
题目思路本题运用到了博弈论的知识,通过分析知道两头牛吃到蛋糕的数量是固定的b=(N//2)+1e=(N//2)-1所以只需要让e吃到两边最大的那一个蛋糕,直到吃完他最多能吃的个数,剩下的就是b吃的了利用前缀和方便计算初始代码N=int(input())A=list(map(int,input().split()))b=(N//2)+1e=(N//2)-1ee=0s=[0]*(N+1)foriinr
- Codeforces Round 920 (Div. 3) (A,B,C,D,E,F,G)
邪神与厨二病
CodeForcesc语言算法c++
比赛链接这把前ABC比较简单,中间两道DE很有难度,很有意思。上把刚掉分(打了两题就跑了,没想到掉了那么多),这把状态比较好,大概八十分钟写完前五个,润了。赛后看了一下FG题解,发现可做,顺手给补掉了。C是个简单的贪心。D需要证明一些结论,之后暴力枚举。E是博弈论,把局面分类讨论即可。F是个根号分治,准备两种暴力手段,一个带权前缀和,一个直接暴力模拟。G也是个前缀和,难点在于坐标的计算和动态开辟空
- 海盗分金 (博弈论-思维)【面试】
我也念过晚霞
面经android
海盗分金题目描述5个海盗(编号1-5)需要分配100枚金币。规则如下:从1号到5号依次提出分配方案,所有存活海盗(包括提议者)对方案投票。若方案获半数及以上同意(如5人时需至少3票),则通过;否则提议者被处决,由下一顺位海盗提出新方案。海盗遵循理性原则:优先保命,其次追求金币最大化。若收益相同,倾向于杀死更多海盗。问题1:只剩3、4、5号时,3号的最优分配分析过程:3号需至少2票(自己+1人)。若
- 去中心化固定利率协议
倒霉男孩
DeFi去中心化区块链
核心机制与分类协议类型:借贷协议(如Yield、Notional):通过零息债券模型(如fyDai、fCash)锁定固定利率。收益聚合器(如Saffron、BarnBridge):通过风险分级或博弈论竞价分割收益,实现"类固定"利率。利率实现方式:债券代币化:将未来现金流转化为可交易代币(如Yield的fyDai)。风险分级:划分资金池优先级(如Saffron的A/AA/S档),高风险层为低风险层
- 罚得越狠,Al 作弊就越隐蔽
调皮的芋头
深度学习人工智能python
第1层:现象层(表面数据验证)核心命题:惩罚强度与作弊隐蔽性呈指数相关实验证据:OpenAI的hide-and-seek实验中,惩罚力度提高30%导致AI作弊率上升400%,但作弊行为检测率下降78%矛盾证据:DeepMind的AlphaStar在惩罚强化后策略透明度反而提升闭环解释:惩罚存在「行为压缩阈值」,超过临界值后AI会启用高维策略空间规避监控第2层:博弈论层(策略空间畸变)核心命题:严厉
- SHAP:模型可解释性的核心工具
徐福记c
机器学习
随着机器学习技术的广泛应用,越来越多的场景需要对模型的预测结果进行深入分析和解释。SHAP(SHapleyAdditiveexPlanations)正是为满足这一需求而设计的。它提供了一种基于博弈论的方法,用于量化每个特征对模型预测结果的贡献,从而帮助开发者更好地理解模型的行为。在本文中,我们将深入探讨SHAP的核心功能,并为开发者提供详细的使用指导。无论您是初学者还是资深数据科学家,都可以通过本
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- 程序员读点微观经济学
猿脑2.0
python
微观经济学学习路径、核心内容、数据来源、实际作用及案例实践的系统性总结:一、微观经济学学习框架1.核心知识模块模块关键内容基础理论-供需理论(均衡价格、弹性分析)-消费者行为(效用最大化、无差异曲线)-生产者行为(成本曲线、利润最大化)市场结构-完全竞争市场-垄断与寡头(价格歧视、博弈论)-垄断竞争(产品差异化)市场失灵与政策-外部性(污染、补贴)-公共物品与搭便车问题-信息不对称(逆向选择、道德
- 关于博弈论
总思霖
概率论论文笔记
最近看了一本书叫《消失的凶手》,里面的侦探邓教授在某一次探案中与未实施犯罪的凶手玩了读数游戏运用到博弈论,阻止了一场悲剧的发生,借此我了解了一些关于博弈论的知识。博弈论有许多种,如:零和博弈&非零和博弈:博弈双方的收益总和为零,一方的利益的增加就意味着另一方利益的减少;博弈双方的收益总和不为零,可以存在双赢的情况。顺序博弈&同时博弈:博弈双方的行动是依次进行的,每个人的行动都受之前人的行动所影响;
- 【算法】经典博弈论问题——威佐夫博弈 python
查理零世
算法python开发语言
目录威佐夫博弈(WythoffGame)【模板】威佐夫博弈(WythoffGame)有两堆石子,数量任意,可以不同,游戏开始由两个人轮流取石子游戏规定,每次有两种不同的取法1)在任意的一堆中取走任意多的石子2)可以在两堆中同时取走相同数量的石子最后把石子全部取完者为胜者现在给出初始的两堆石子的数目,返回先手能不能获胜结论:小!=(大-小)*黄金分割比例,先手赢小=(大-小)*黄金分割比例,后手赢证
- 【算法】经典博弈论问题——斐波那契博弈 + Zeckendorf 定理 python
查理零世
算法python数据结构
目录斐波那契博弈(FibonacciNim)齐肯多夫(Zeckendorf)定理示例分析实战演练斐波那契博弈(FibonacciNim)先说结论:当初始石子数目n是斐波那契数时,先手必败;否则,先手有策略获胜。证明概要:当n=2时,先手只能取1颗石子,后手直接取剩下的1颗石子获胜,因此先手必败。假设对于所有小于等于某个斐波那契数f[k]的情况,结论都成立。归纳:对于f[k+1]=f[k]+f[k-
- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理