《R语言》学习笔记(第3篇)

本部分讲“数据重塑”和“函数”

《R语言》学习笔记(第3篇)_第1张图片《R语言》学习笔记(第3篇)_第2张图片

 

> #于数据帧中加入列和行
> #我们可以使用cbind()函数连接多个向量来创建数据帧。 此外,我们可以使用rbind()函数合并两个数据帧。 
> #create vector objects
> city <-c("Tampa","Seattle","Hartford","Denver")
> state <- c("FL","WA","CT","CO")
> zipcode <- c(33602,98104,06161,80294)
> 
> #combine above three vectos into one data frame
> addresses <- cbind(city,state,zipcode)
> 
> #print a header
> cat("# # # # The first data frame # # # #
+ ")
# # # # The first data frame # # # #
> print(addresses)
     city       state zipcode
[1,] "Tampa"    "FL"  "33602"
[2,] "Seattle"  "WA"  "98104"
[3,] "Hartford" "CT"  "6161" 
[4,] "Denver"   "CO"  "80294"
> # Create another data frame with similar columns
> new.address <- data.frame(
+    city = c("Lowry","Charlotte"),
+    state = c("CO","FL"),
+    zipcode = c("80230","33949"),
+    stringsAsFactors = FALSE
+ )
> 
> # Print a header.
> cat("# # # The Second data frame
+ ") 
# # # The Second data frame
> 
> # Print the data frame.
> print(new.address)
       city state zipcode
1     Lowry    CO   80230
2 Charlotte    FL   33949
> 
> # Combine rows form both the data frames.
> all.addresses <- rbind(addresses,new.address)
> 
> # Print a header.
> cat("# # # The combined data frame
+ ") 
# # # The combined data frame
> 
> # Print the result.
> print(all.addresses)
       city state zipcode
1     Tampa    FL   33602
2   Seattle    WA   98104
3  Hartford    CT    6161
4    Denver    CO   80294
5     Lowry    CO   80230
6 Charlotte    FL   33949
> 
> 
> 
> #合并数据帧
> #我们可以使用merge()函数合并两个数据帧。 数据帧必须具有相同的列名称,在其上进行合并。 
> library(MASS)
> merged.Pima <- merge(x = Pima.te, y = Pima.tr,
+    by.x = c("bp", "bmi"),
+    by.y = c("bp", "bmi")
+ )
> print(merged.Pima)
   bp  bmi npreg.x glu.x skin.x ped.x age.x type.x npreg.y glu.y skin.y ped.y age.y type.y
1  60 33.8       1   117     23 0.466    27     No       2   125     20 0.088    31     No
2  64 29.7       2    75     24 0.370    33     No       2   100     23 0.368    21     No
3  64 31.2       5   189     33 0.583    29    Yes       3   158     13 0.295    24     No
4  64 33.2       4   117     27 0.230    24     No       1    96     27 0.289    21     No
5  66 38.1       3   115     39 0.150    28     No       1   114     36 0.289    21     No
6  68 38.5       2   100     25 0.324    26     No       7   129     49 0.439    43    Yes
7  70 27.4       1   116     28 0.204    21     No       0   124     20 0.254    36    Yes
8  70 33.1       4    91     32 0.446    22     No       9   123     44 0.374    40     No
9  70 35.4       9   124     33 0.282    34     No       6   134     23 0.542    29    Yes
10 72 25.6       1   157     21 0.123    24     No       4    99     17 0.294    28     No
11 72 37.7       5    95     33 0.370    27     No       6   103     32 0.324    55     No
12 74 25.9       9   134     33 0.460    81     No       8   126     38 0.162    39     No
13 74 25.9       1    95     21 0.673    36     No       8   126     38 0.162    39     No
14 78 27.6       5    88     30 0.258    37     No       6   125     31 0.565    49    Yes
15 78 27.6      10   122     31 0.512    45     No       6   125     31 0.565    49    Yes
16 78 39.4       2   112     50 0.175    24     No       4   112     40 0.236    38     No
17 88 34.5       1   117     24 0.403    40    Yes       4   127     11 0.598    28     No
> nrow(merged.Pima)
[1] 17
> 
> library(MASS)
> print(ships)
   type year period service incidents
1     A   60     60     127         0
2     A   60     75      63         0
3     A   65     60    1095         3
4     A   65     75    1095         4
5     A   70     60    1512         6
6     A   70     75    3353        18
7     A   75     60       0         0
8     A   75     75    2244        11
9     B   60     60   44882        39
10    B   60     75   17176        29
11    B   65     60   28609        58
12    B   65     75   20370        53
13    B   70     60    7064        12
14    B   70     75   13099        44
15    B   75     60       0         0
16    B   75     75    7117        18
17    C   60     60    1179         1
18    C   60     75     552         1
19    C   65     60     781         0
20    C   65     75     676         1
21    C   70     60     783         6
22    C   70     75    1948         2
23    C   75     60       0         0
24    C   75     75     274         1
25    D   60     60     251         0
26    D   60     75     105         0
27    D   65     60     288         0
28    D   65     75     192         0
29    D   70     60     349         2
30    D   70     75    1208        11
31    D   75     60       0         0
32    D   75     75    2051         4
33    E   60     60      45         0
34    E   60     75       0         0
35    E   65     60     789         7
36    E   65     75     437         7
37    E   70     60    1157         5
38    E   70     75    2161        12
39    E   75     60       0         0
40    E   75     75     542         1
> 
> install.packages("Package Name")
Warning message:
package ‘Package Name’ is not available (for R version 3.4.1) 
>  install.packages("Reshape")
Warning messages:
1: package ‘Reshape’ is not available (for R version 3.4.1) 
2: Perhaps you meant ‘reshape’ ? 
> 2
[1] 2
> 
> install.packages("reshape")
> install.packages("reshape2")
> install.packages("knitr")

> library(reshape2)
Warning message:
程辑包‘reshape2’是用R版本3.4.4 来建造的 
> library(knitr)
Warning message:
程辑包‘knitr’是用R版本3.4.4 来建造的 

> molten.ships <- melt(ships, id = c("type","year"))
> print(molten.ships)
    type year  variable value
1      A   60    period    60
2      A   60    period    75
3      A   65    period    60
4      A   65    period    75
5      A   70    period    60
6      A   70    period    75
7      A   75    period    60
8      A   75    period    75
9      B   60    period    60
10     B   60    period    75
11     B   65    period    60
12     B   65    period    75
13     B   70    period    60
14     B   70    period    75
15     B   75    period    60
16     B   75    period    75
17     C   60    period    60
18     C   60    period    75
19     C   65    period    60
20     C   65    period    75
21     C   70    period    60
22     C   70    period    75
23     C   75    period    60
24     C   75    period    75
25     D   60    period    60
26     D   60    period    75
27     D   65    period    60
28     D   65    period    75
29     D   70    period    60
30     D   70    period    75
31     D   75    period    60
32     D   75    period    75
33     E   60    period    60
34     E   60    period    75
35     E   65    period    60
36     E   65    period    75
37     E   70    period    60
38     E   70    period    75
39     E   75    period    60
40     E   75    period    75
41     A   60   service   127
42     A   60   service    63
43     A   65   service  1095
44     A   65   service  1095
45     A   70   service  1512
46     A   70   service  3353
47     A   75   service     0
48     A   75   service  2244
49     B   60   service 44882
50     B   60   service 17176
51     B   65   service 28609
52     B   65   service 20370
53     B   70   service  7064
54     B   70   service 13099
55     B   75   service     0
56     B   75   service  7117
57     C   60   service  1179
58     C   60   service   552
59     C   65   service   781
60     C   65   service   676
61     C   70   service   783
62     C   70   service  1948
63     C   75   service     0
64     C   75   service   274
65     D   60   service   251
66     D   60   service   105
67     D   65   service   288
68     D   65   service   192
69     D   70   service   349
70     D   70   service  1208
71     D   75   service     0
72     D   75   service  2051
73     E   60   service    45
74     E   60   service     0
75     E   65   service   789
76     E   65   service   437
77     E   70   service  1157
78     E   70   service  2161
79     E   75   service     0
80     E   75   service   542
81     A   60 incidents     0
82     A   60 incidents     0
83     A   65 incidents     3
84     A   65 incidents     4
85     A   70 incidents     6
86     A   70 incidents    18
87     A   75 incidents     0
88     A   75 incidents    11
89     B   60 incidents    39
90     B   60 incidents    29
91     B   65 incidents    58
92     B   65 incidents    53
93     B   70 incidents    12
94     B   70 incidents    44
95     B   75 incidents     0
96     B   75 incidents    18
97     C   60 incidents     1
98     C   60 incidents     1
99     C   65 incidents     0
100    C   65 incidents     1
101    C   70 incidents     6
102    C   70 incidents     2
103    C   75 incidents     0
104    C   75 incidents     1
105    D   60 incidents     0
106    D   60 incidents     0
107    D   65 incidents     0
108    D   65 incidents     0
109    D   70 incidents     2
110    D   70 incidents    11
111    D   75 incidents     0
112    D   75 incidents     4
113    E   60 incidents     0
114    E   60 incidents     0
115    E   65 incidents     7
116    E   65 incidents     7
117    E   70 incidents     5
118    E   70 incidents    12
119    E   75 incidents     0
120    E   75 incidents     1


> library(reshape)

载入程辑包:‘reshape’

The following objects are masked from ‘package:reshape2’:

    colsplit, melt, recast

Warning message:
程辑包‘reshape’是用R版本3.4.4 来建造的 
> recasted.ship <- cast(molten.ships, type+year~variable,sum)
> print(recasted.ship)
   type year period service incidents
1     A   60    135     190         0
2     A   65    135    2190         7
3     A   70    135    4865        24
4     A   75    135    2244        11
5     B   60    135   62058        68
6     B   65    135   48979       111
7     B   70    135   20163        56
8     B   75    135    7117        18
9     C   60    135    1731         2
10    C   65    135    1457         1
11    C   70    135    2731         8
12    C   75    135     274         1
13    D   60    135     356         0
14    D   65    135     480         0
15    D   70    135    1557        13
16    D   75    135    2051         4
17    E   60    135      45         0
18    E   65    135    1226        14
19    E   70    135    3318        17
20    E   75    135     542         1
> 

函数

《R语言》学习笔记(第3篇)_第3张图片

《R语言》学习笔记(第3篇)_第4张图片 

> #内置功能
> #内置函数的简单示例是seq(),mean(),max(),sum(x)和paste(...)等。它们由用户编写的程序直接调用。 您可以参考最广泛使用的R函数。 
> # Create a sequence of numbers from 32 to 44.
> print(seq(32,44))
 [1] 32 33 34 35 36 37 38 39 40 41 42 43 44
> 
> # Find mean of numbers from 25 to 82.
> print(mean(25:82))
[1] 53.5
> 
> # Find sum of numbers frm 41 to 68.
> print(sum(41:68))
[1] 1526
> 
> #用户定义的函数
> #我们可以在R语言中创建用户定义的函数。它们特定于用户想要的,一旦创建,它们就可以像内置函数一样使用。 下面是一个创建和使用函数的例子。 
> new.function <- function(a) {
+   for(i in 1:a) {
+     b<- i^2
+     print(b)
+   }
+ }
> 
> #调用函数
> new.function(6)
[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36
> 
> #使用参数值调用函数(按位置和名称) 
> #函数调用的参数可以按照函数中定义的顺序提供,也可以以不同的顺序提供,但分配给参数的名称。 
> # Create a function with arguments.
> new.function <- function(a,b,c) {
+    result <- a * b + c
+    print(result)
+ }
> 
> # Call the function by position of arguments.
> new.function(5,3,11)
[1] 26
> 
> # Call the function by names of the arguments.
> new.function(a = 11, b = 5, c = 3)
[1] 58
> 
> #功能的延迟计算
> 对函数的参数进行延迟评估,这意味着它们只有在函数体需要时才进行评估。 对函数的参数进行延迟评估,这意味着它们只有在函数体需要时才进行评估。 

> # 对函数的参数进行延迟评估,这意味着它们只有在函数体需要时才进行评估。
> # Create a function with arguments.
> new.function <- function(a, b) {
+    print(a^2)
+    print(a)
+    print(b)
+ }
> 
> # Evaluate the function without supplying one of the arguments.
> new.function(6)
[1] 36
[1] 6
Error in print(b) : 缺少参数"b",也没有缺省值
> 

 

你可能感兴趣的:(数据挖掘)