kafka-connect-hive sink插件入门指南

面试:你懂什么是分布式系统吗?Redis分布式锁都不会?>>>   hot3.png

kafka-connect-hive是基于kafka-connect平台实现的hive数据读取和写入插件,主要由sourcesink两部分组成,source部分完成hive表数据的读取任务,kafka-connect将这些数据写入到其他数据存储层中,比如hiveES数据的流入。sink部分完成向hive表写数据的任务,kafka-connect将第三方数据源(如MySQL)里的数据读取并写入到hive表中。

在这里我使用的是Landoop公司开发的kafka-connect-hive插件,项目文档地址Hive Sink,接下来看看如何使用该插件的sink部分。

环境准备

  • Apache Kafka 2.11-2.1.0
  • Confluent-5.1.0
  • Apache Hadoop 2.6.3
  • Apache Hive 1.2.1
  • Java 1.8

功能

  • 支持KCQL路由查询,允许将kafka主题中的所有字段或部分字段写入hive表中
  • 支持根据某一字段动态分区
  • 支持全量和增量同步数据,不支持部分更新

开始使用

启动依赖

1、启动kafka

cd kafka_2.11-2.1.0
bin/kafka-server-start.sh config/server.properties &

2、启动schema-registry

cd confluent-5.1.0
bin/schema-registry-start etc/schema-registry/schema-registry.properties &

schema-registry组件提供了kafka topicschema管理功能,保存了schema的各个演变版本,帮助我们解决新旧数据schema兼容问题。这里我们使用apache avro库来序列化kafkakeyvalue,因此需要依赖schema-registry组件,schema-registry使用默认的配置。

3、启动kafka-connect

修改confluent-5.1.0/etc/schema-registry目录下connect-avro-distributed.properties文件的配置,修改后内容如下:

# Sample configuration for a distributed Kafka Connect worker that uses Avro serialization and
# integrates the the Schema Registry. This sample configuration assumes a local installation of
# Confluent Platform with all services running on their default ports.

# Bootstrap Kafka servers. If multiple servers are specified, they should be comma-separated.
bootstrap.servers=localhost:9092

# The group ID is a unique identifier for the set of workers that form a single Kafka Connect
# cluster
group.id=connect-cluster

# The converters specify the format of data in Kafka and how to translate it into Connect data.
# Every Connect user will need to configure these based on the format they want their data in
# when loaded from or stored into Kafka
key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

# Internal Storage Topics.
#
# Kafka Connect distributed workers store the connector and task configurations, connector offsets,
# and connector statuses in three internal topics. These topics MUST be compacted.
# When the Kafka Connect distributed worker starts, it will check for these topics and attempt to create them
# as compacted topics if they don't yet exist, using the topic name, replication factor, and number of partitions
# as specified in these properties, and other topic-specific settings inherited from your brokers'
# auto-creation settings. If you need more control over these other topic-specific settings, you may want to
# manually create these topics before starting Kafka Connect distributed workers.
#
# The following properties set the names of these three internal topics for storing configs, offsets, and status.
config.storage.topic=connect-configs
offset.storage.topic=connect-offsets
status.storage.topic=connect-statuses

# The following properties set the replication factor for the three internal topics, defaulting to 3 for each
# and therefore requiring a minimum of 3 brokers in the cluster. Since we want the examples to run with
# only a single broker, we set the replication factor here to just 1. That's okay for the examples, but
# ALWAYS use a replication factor of AT LEAST 3 for production environments to reduce the risk of 
# losing connector offsets, configurations, and status.
config.storage.replication.factor=1
offset.storage.replication.factor=1
status.storage.replication.factor=1

# The config storage topic must have a single partition, and this cannot be changed via properties. 
# Offsets for all connectors and tasks are written quite frequently and therefore the offset topic
# should be highly partitioned; by default it is created with 25 partitions, but adjust accordingly
# with the number of connector tasks deployed to a distributed worker cluster. Kafka Connect records
# the status less frequently, and so by default the topic is created with 5 partitions.
#offset.storage.partitions=25
#status.storage.partitions=5

# The offsets, status, and configurations are written to the topics using converters specified through
# the following required properties. Most users will always want to use the JSON converter without schemas. 
# Offset and config data is never visible outside of Connect in this format.
internal.key.converter=org.apache.kafka.connect.json.JsonConverter
internal.value.converter=org.apache.kafka.connect.json.JsonConverter
internal.key.converter.schemas.enable=false
internal.value.converter.schemas.enable=false

# Confluent Control Center Integration -- uncomment these lines to enable Kafka client interceptors
# that will report audit data that can be displayed and analyzed in Confluent Control Center
# producer.interceptor.classes=io.confluent.monitoring.clients.interceptor.MonitoringProducerInterceptor
# consumer.interceptor.classes=io.confluent.monitoring.clients.interceptor.MonitoringConsumerInterceptor

# These are provided to inform the user about the presence of the REST host and port configs
# Hostname & Port for the REST API to listen on. If this is set, it will bind to the interface used to listen to requests.
#rest.host.name=0.0.0.0
#rest.port=8083

# The Hostname & Port that will be given out to other workers to connect to i.e. URLs that are routable from other servers.
#rest.advertised.host.name=0.0.0.0
#rest.advertised.port=8083

# Set to a list of filesystem paths separated by commas (,) to enable class loading isolation for plugins
# (connectors, converters, transformations). The list should consist of top level directories that include
# any combination of:
# a) directories immediately containing jars with plugins and their dependencies
# b) uber-jars with plugins and their dependencies
# c) directories immediately containing the package directory structure of classes of plugins and their dependencies
# Examples:
# plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors,
# Replace the relative path below with an absolute path if you are planning to start Kafka Connect from within a
# directory other than the home directory of Confluent Platform.
plugin.path=/kafka/confluent-5.1.0/plugins/lib

这里需要设置plugin.path参数,该参数指定了kafka-connect插件包的保存地址,必须得设置。

下载kafka-connect-hive-1.2.1-2.1.0-all.tar.gz,解压后将kafka-connect-hive-1.2.1-2.1.0-all.jar放到plugin.path指定的目录下,然后执行如下命令启动kafka-connect

cd confluent-5.1.0
bin/connect-distributed etc/schema-registry/connect-avro-distributed.properties

准备测试数据

1、在hive服务器上使用beeline执行如下命令:

# 创建hive_connect数据库
create database hive_connect;
# 创建cities_orc表
use hive_connect;
create table cities_orc (city string, state string, population int, country string) stored as orc;

2、使用postman添加kafka-connect-hive sink的配置到kafka-connect

URL:localhost:8083/connectors/

请求类型:POST

请求体如下:

{
    "name": "hive-sink-example",
    "config": {
        "name": "hive-sink-example",
        "connector.class": "com.landoop.streamreactor.connect.hive.sink.hiveSinkConnector",
        "tasks.max": 1,
        "topics": "hive_sink_orc",
        "connect.hive.kcql": "insert into cities_orc select * from hive_sink_orc AUTOCREATE PARTITIONBY state STOREAS ORC WITH_FLUSH_INTERVAL = 10 WITH_PARTITIONING = DYNAMIC",
        "connect.hive.database.name": "hive_connect",
        "connect.hive.hive.metastore": "thrift",
        "connect.hive.hive.metastore.uris": "thrift://quickstart.cloudera:9083",
        "connect.hive.fs.defaultFS": "hdfs://quickstart.cloudera:9001",
        "connect.hive.error.policy": "NOOP",
        "connect.progress.enabled": true
    }
}

开始测试,查看结果

启动kafka producer,写入测试数据,scala测试代码如下:

class AvroTest {

 /**
    * 测试kafka使用avro方式生产数据
    * 参考 https://docs.confluent.io/current/schema-registry/docs/serializer-formatter.html
    */
  @Test
  def testProducer: Unit = {
    // 设置kafka broker地址、序列化方式、schema-registry组件的地址
    val props = new Properties()
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092")
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[io.confluent.kafka.serializers.KafkaAvroSerializer])
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[io.confluent.kafka.serializers.KafkaAvroSerializer])
    props.put("citySchema.registry.url", "http://localhost:8081")

    // 设置schema
    val citySchema = "{\"type\":\"record\",\"name\":\"myrecord\",\"fields\":[{\"name\":\"city\",\"type\":\"string\"},{\"name\":\"state\",\"type\":\"string\"},{\"name\":\"population\",\"type\":\"int\"},{\"name\":\"country\",\"type\":\"string\"}]}"
    val parser = new Schema.Parser()
    val schema = parser.parse(citySchema)

    // 构造测试数据
    val avroRecord1 = new GenericData.Record(schema)
    avroRecord1.put("city", "Philadelphia")
    avroRecord1.put("state", "PA")
    avroRecord1.put("population", 1568000)
    avroRecord1.put("country", "USA")

    val avroRecord2 = new GenericData.Record(schema)
    avroRecord2.put("city", "Chicago")
    avroRecord2.put("state", "IL")
    avroRecord2.put("population", 2705000)
    avroRecord2.put("country", "USA")

    val avroRecord3 = new GenericData.Record(schema)
    avroRecord3.put("city", "New York")
    avroRecord3.put("state", "NY")
    avroRecord3.put("population", 8538000)
    avroRecord3.put("country", "USA")

    // 生产数据
    val producer = new KafkaProducer[String, GenericData.Record](props)
    try {
      val recordList = List(avroRecord1, avroRecord2, avroRecord3)
      val key = "key1"

      for (elem <- recordList) {
        val record = new ProducerRecord("hive_sink_orc", key, elem)
        for (i <- 0 to 100) {
          val ack = producer.send(record).get()
          println(s"${ack.toString} written to partition ${ack.partition.toString}")
        }
      }
    } catch {
      case e: Throwable => e.printStackTrace()
    } finally {
      // When you're finished producing records, you can flush the producer to ensure it has all been written to Kafka and
      // then close the producer to free its resources.
      // 调用flush方法确保所有数据都被写入到Kafka
      producer.flush()
      // 调用close方法释放资源
      producer.close()
    }
  }
 
}

4、使用beeline查询hive数据:

use hive_connect;
select * from cities_orc;

输出部分结果如下:

+------------------+------------------------+---------------------+-------------------+--+
| cities_orc.city  | cities_orc.population  | cities_orc.country  | cities_orc.state  |
+------------------+------------------------+---------------------+-------------------+--+
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Chicago          | 2705000                | USA                 | IL                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |
| Philadelphia     | 1568000                | USA                 | PA                |          

配置说明

KCQL配置

connect.hive.kcql中的配置项说明如下:

  • WITH_FLUSH_INTERVALlong类型,表示文件提交的时间间隔,单位是毫秒
  • WITH_FLUSH_SIZElong类型,表示执行提交操作之前,已提交到HDFS的文件长度
  • WITH_FLUSH_COUNTlong类型,表示执行提交操作之前,未提交到HDFS的记录数
  • WITH_SCHEMA_EVOLUTIONstring类型,默认值是MATCH,表示hive schemakafka topic recordschema的兼容策略,hive connector会使用该策略来添加或移除字段
  • WITH_TABLE_LOCATIONstring类型,表示hive表在HDFS中的存储位置,如果不指定的话,将使用hive中默认的配置
  • WITH_OVERWRITEboolean类型,表示是否覆盖hive表中已存在的记录,使用该策略时,会先删除已有的表,再新建
  • PARTITIONBYList类型,保存分区字段。指定后,将从指定的列中获取分区字段的值
  • WITH_PARTITIONINGstring类型,默认值是STRICT,表示分区创建方式。主要有DYNAMICSTRICT两种方式。DYNAMIC方式将根据PARTITIONBY指定的分区字段创建分区,STRICT方式要求必须已经创建了所有分区
  • AUTOCREATEboolean类型,表示是否自动创建表

Kafka connect配置

Kafka connect的配置项说明如下:

  • namestring类型,表示connector的名称,在整个kafka-connect集群中唯一
  • topicsstring类型,表示保存数据的topic名称,必须与KCQL语句中的topic名称一致
  • tasks.maxint类型,默认值为1,表示connector的任务数量
  • connector.classstring类型,表示connector类的名称,值必须是com.landoop.streamreactor.connect.hive.sink.HiveSinkConnector
  • connect.hive.kcqlstring类型,表示kafka-connect查询语句
  • connect.hive.database.namestring类型,表示hive数据库的名称
  • connect.hive.hive.metastorestring类型,表示连接hive metastore所使用的网络协议
  • connect.hive.hive.metastore.urisstring类型,表示hive metastore的连接地址
  • connect.hive.fs.defaultFSstring类型,表示HDFS的地址

你可能感兴趣的:(Kafka)