网上有一篇曹京写的《wav文件格式分析详解》已经介绍过wav文件格式,有兴趣的读者可以查阅。wav文件通常包含4段:RIFF、格式段、FACT段和数据段。 PCM数据就放在数据段。只要格式段设置的格式与数据段的数据一致,播放程序就可以正确解析。下面这个数组的数据其实就是一个最小的wav文件。
static const unsigned char wav_template[] =
{
// RIFF WAVE Chunk
0x52, 0x49, 0x46, 0x46, // "RIFF"
0x30, 0x00, 0x00, 0x00, // 总长度 整个wav文件大小减去ID和Size所占用的字节数
0x57, 0x41, 0x56, 0x45, // "WAVE"
// Format Chunk
0x66, 0x6D, 0x74, 0x20, // "fmt "
0x10, 0x00, 0x00, 0x00, // 块长度
0x01, 0x00, // 编码方式
0x01, 0x00, // 声道数目
0x80, 0x3E, 0x00, 0x00, // 采样频率
0x00, 0x7D, 0x00, 0x00, // 每秒所需字节数=采样频率*块对齐字节
0x02, 0x00, // 数据对齐字节=每个样本字节数*声道数目
0x10, 0x00, // 样本宽度
// Fact Chunk
0x66, 0x61, 0x63, 0x74, // "fact"
0x04, 0x00, 0x00, 0x00, // 块长度
0x00, 0xBE, 0x00, 0x00,
// Data Chunk
0x64, 0x61, 0x74, 0x61, // "data"
0x00, 0x00, 0x00, 0x00, // 块长度
};
这个wav文件的数据长度为0。我们要增加PCM数据只要完成以下工作:
样本长度可能不是8的整数倍,这时wav文件还是要求样本按照字节对齐。在一个样本中数据是左对齐的,右侧空位用0填充。 pcm2wav只考虑了样本长度是16位的情况。
如果有多个声道,wav文件要求先放样本1的各声道数据,再放样本2的各声道数据,依此类推。因为我没有碰到过处理多声道数据的需求,所以pcm2wav只考虑了单声道。
------------------------------------------------------------------------------------------------------------------------------------
附上原文《wav文件格式分析详解》
作者:曹京
日期:2006年7月17日
一、综述
WAVE文件是由若干个Chunk组成的。按照在文件中的出现位置包括:RIFF WAVE Chunk, Format Chunk, Fact Chunk(可选), Data Chunk。具体见下图:
------------------------------------------------
| RIFF WAVE Chunk |
| ID = 'RIFF' |
| RiffType = 'WAVE' |
------------------------------------------------
| Format Chunk |
| ID = 'fmt ' |
------------------------------------------------
| Fact Chunk(optional) |
| ID = 'fact' |
------------------------------------------------
| Data Chunk |
| ID = 'data' |
------------------------------------------------
其中除了Fact Chunk外,其他三个Chunk是必须的。每个Chunk有各自的ID,位于Chunk最开始位置,作为标示,而且均为4个字节。并且紧跟在ID后面的是Chunk大小(去除ID和Size所占的字节数后剩下的其他字节数目),4个字节表示,低字节表示数值低位,高字节表示数值高位。下面具体介绍各个Chunk内容。
PS: 所有数值表示均为低字节表示低位,高字节表示高位。
二、具体介绍
1、RIFF WAVE Chunk
==================================
| |所占字节数| 具体内容 |
==================================
| ID | 4 Bytes | 'RIFF' |
----------------------------------
| Size | 4 Bytes | |
----------------------------------
| Type | 4 Bytes | 'WAVE' |
----------------------------------
图2 RIFF WAVE Chunk
以'FIFF'作为标示,然后紧跟着为size字段,该size是整个wav文件大小减去ID和Size所占用的字节数,即FileLen - 8 = Size。然后是Type字段,为'WAVE',表示是wav文件。
结构定义如下:
struct RIFF_HEADER {
char szRiffID[4]; // 'R','I','F','F'
DWORD dwRiffSize;
char szRiffFormat[4]; // 'W','A','V','E'
};
2、
Format Chunk
====================================================================
| | 字节数 | 具体内容 |
====================================================================
| ID | 4 Bytes | 'fmt ' |
--------------------------------------------------------------------
| Size | 4 Bytes | 数值为16或18,18则最后又附加信息 |
-------------------------------------------------------------------- ----
| FormatTag | 2 Bytes | 编码方式,一般为0x0001 | |
-------------------------------------------------------------------- |
| Channels | 2 Bytes | 声道数目,1--单声道;2--双声道 | |
-------------------------------------------------------------------- |
| SamplesPerSec | 4 Bytes | 采样频率 | |
-------------------------------------------------------------------- |
| AvgBytesPerSec| 4 Bytes | 每秒所需字节数 | |===> WAVE_FORMAT
-------------------------------------------------------------------- |
| BlockAlign | 2 Bytes | 数据块对齐单位(每个采样需要的字节数) | |
-------------------------------------------------------------------- |
| BitsPerSample | 2 Bytes | 每个采样需要的bit数 | |
-------------------------------------------------------------------- |
| | 2 Bytes | 附加信息(可选,通过Size来判断有无) | |
-------------------------------------------------------------------- ----
图3 Format Chunk
以'fmt '作为标示。一般情况下Size为16,此时最后附加信息没有;如果为18则最后多了2个字节的附加信息。主要由一些软件制成的wav格式中含有该2个字节的附加信息。
结构定义如下:
struct WAVE_FORMAT {
WORD wFormatTag;
WORD wChannels;
DWORD dwSamplesPerSec;
DWORD dwAvgBytesPerSec;
WORD wBlockAlign;
WORD wBitsPerSample;
};
struct FMT_BLOCK {
char szFmtID[4]; // 'f','m','t',' '
DWORD dwFmtSize;
WAVE_FORMAT wavFormat;
};
3、Fact Chunk
==================================
| |所占字节数| 具体内容 |
==================================
| ID | 4 Bytes | 'fact' |
----------------------------------
| Size | 4 Bytes | 数值为4 |
----------------------------------
| data | 4 Bytes | |
----------------------------------
图4 Fact Chunk
Fact Chunk是可选字段,一般当wav文件由某些软件转化而成,则包含该Chunk。
结构定义如下:
struct FACT_BLOCK {
char szFactID[4]; // 'f','a','c','t'
DWORD dwFactSize;
};
4、Data Chunk
==================================
| |所占字节数| 具体内容 |
==================================
| ID | 4 Bytes | 'data' |
----------------------------------
| Size | 4 Bytes | |
----------------------------------
| data | | |
----------------------------------
图5 Data Chunk
Data Chunk是真正保存wav数据的地方,以'data'作为该Chunk的标示。然后是数据的大小。紧接着就是wav数据。根据Format Chunk中的声道数以及采样bit数,wav数据的bit位置可以分成以下几种形式:
---------------------------------------------------------------------
| 单声道 | 取样1 | 取样2 | 取样3 | 取样4 |
| |--------------------------------------------------------
| 8bit量化 | 声道0 | 声道0 | 声道0 | 声道0 |
---------------------------------------------------------------------
| 双声道 | 取样1 | 取样2 |
| |--------------------------------------------------------
| 8bit量化 | 声道0(左) | 声道1(右) | 声道0(左) | 声道1(右) |
---------------------------------------------------------------------
| | 取样1 | 取样2 |
| 单声道 |--------------------------------------------------------
| 16bit量化 | 声道0 | 声道0 | 声道0 | 声道0 |
| | (低位字节) | (高位字节) | (低位字节) | (高位字节) |
---------------------------------------------------------------------
| | 取样1 |
| 双声道 |--------------------------------------------------------
| 16bit量化 | 声道0(左) | 声道0(左) | 声道1(右) | 声道1(右) |
| | (低位字节) | (高位字节) | (低位字节) | (高位字节) |
---------------------------------------------------------------------
图6 wav数据bit位置安排方式
Data Chunk头结构定义如下:
struct DATA_BLOCK {
char szDataID[4]; // 'd','a','t','a'
DWORD dwDataSize;
};
三、小结
因此,根据上述结构定义以及格式介绍,很容易编写相应的wav格式解析代码。这里具体的代码就不给出了。
四、参考资料
1、李敏, 声频文件格式WAVE的转换, 电脑知识与技术(学术交流), 2005.
2、http://www.codeguru.com/cpp/g-m/multimedia/audio/article.php/c8935/PCM-Audio-and-Wave-Files.htm
3、http://www.newsmth.net/pc/pcshowcom.php?cid=129276