大多数spark作业的性能主要就是消耗了shuffle过程,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优。但是也必须提醒大家的是,影响一个Spark作业性能的因素,主要还是代码开发、资源参数以及数据倾斜,shuffle调优只能在整个Spark的性能调优中占到一小部分而已。
在DAG调度的过程中,Stage阶段的划分是根据是否有shuffle过程,也就是存在ShuffleDependency宽依赖的时候,需要进行shuffle,这时候会将作业job划分成多个Stage;
spark 划分 stage 的整体思路是:从后往前推,遇到宽依赖就断开,划分为一个 stage;遇到窄依赖就将这个 RDD 加入该 stage 中。
在 spark 中,Task 的类型分为 2 种:ShuffleMapTask 和 ResultTask
简单来说,DAG 的最后一个阶段会为每个结果的 partition 生成一个 ResultTask,即每个 Stage里面的 Task 的数量是由该 Stage 中最后一个 RDD 的 Partition 的数量所决定的!而其余所有阶段都会生成 ShuffleMapTask;之所以称之为 ShuffleMapTask 是因为它需要将自己的计算结果通过 shuffle 到下一个 stage 中;
负责shuffle过程的执行、计算和处理的组件主要就是ShuffleManager,也即shuffle管理器。
ShuffleManager随着Spark的发展有两种实现的方式,分别为HashShuffleManager(spark1.2之前使用)和SortShuffleManager,因此spark的Shuffle有Hash Shuffle和Sort Shuffle两种
在Spark 1.2以前,默认的shuffle计算引擎是HashShuffleManager。该ShuffleManager而HashShuffleManager有着一个非常严重的弊端,就是会产生大量的中间磁盘文件,进而由大量的磁盘IO操作影响了性能。因此在Spark 1.2以后的版本中,默认的ShuffleManager改成了SortShuffleManager。SortShuffleManager相较于HashShuffleManager来说,有了一定的改进。主要就在于,每个Task在进行shuffle操作时,虽然也会产生较多的临时磁盘文件,但是最后会将所有的临时文件合并(merge)成一个磁盘文件,因此每个Task就只有一个磁盘文件。在下一个stage的shuffle read task拉取自己的数据时,只要根据索引读取每个磁盘文件中的部分数据即可。
spark1.2版本以前:hashShuffleManager
未经优化的hashShuffleManager
经过优化的hashShuffleManager
spark1.2版本以后:SortShuffleManager
普通机制
ByPass机制
对相同的key执行hash算法,从而将相同的key都写入到一个磁盘文件中,而每一个磁盘文件都只属于下游stage的一个task。在将数据写入磁盘之前,会先将数据写入到内存缓冲,当内存缓冲填满之后,才会溢写到磁盘文件中。但是这种策略的不足在于,下游有几个task,上游的每一个task都就都需要创建几个临时文件,每个文件中只存储key取hash之后相同的数据,导致了当下游的task任务过多的时候,上游会堆积大量的小文件。
在shuffle write过程中,task就不是为下游stage的每个task创建一个磁盘文件了。此时会出现shuffleFileGroup的概念,每个shuffleFileGroup会对应一批磁盘文件,磁盘文件的数量与下游stage的task数量是相同的。一个Executor上有多少个CPU core,就可以并行执行多少个task。而第一批并行执行的每个task都会创建一个shuffleFileGroup,并将数据写入对应的磁盘文件内。当Executor的CPU core执行完一批task,接着执行下一批task时,下一批task就会复用之前已有的shuffleFileGroup,包括其中的磁盘文件。也就是说,此时task会将数据写入已有的磁盘文件中,而不会写入新的磁盘文件中。因此,consolidate机制允许不同的task复用同一批磁盘文件,这样就可以有效将多个task的磁盘文件进行一定程度上的合并,从而大幅度减少磁盘文件的数量,进而提升shuffle write的性能。
注意:
如果想使用优化之后的ShuffleManager,需要将:spark.shuffle.consolidateFiles调整为true。(当然,默认是开启的)
总结:
未经优化:
上游的task数量:m
下游的task数量:n
上游的executor数量:k (m>=k)
总共的磁盘文件:m*n
优化之后的:
上游的task数量:m
下游的task数量:n
上游的executor数量:k (m>=k)
总共的磁盘文件:k*n
shuffle write:mapper阶段,上一个stage得到最后的结果写出
shuffle read :reduce阶段,下一个stage拉取上一个stage进行合并
在普通模式下,数据会先写入一个内存数据结构中,此时根据不同的shuffle算子,可以选用不同的数据结构。如果是由聚合操作的shuffle算子,就是用map的数据结构(边聚合边写入内存),如果是join的算子,就使用array的数据结构(直接写入内存)。接着,每写一条数据进入内存数据结构之后,就会判断是否达到了某个临界值,如果达到了临界值的话,就会尝试的将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构。
在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序,排序之后,会分批将数据写入磁盘文件。默认的batch数量是10000条,也就是说,排序好的数据,会以每批次1万条数据的形式分批写入磁盘文件,写入磁盘文件是通过Java的BufferedOutputStream实现的。BufferedOutputStream是Java的缓冲输出流,首先会将数据缓冲在内存中,当内存缓冲满溢之后再一次写入磁盘文件中,这样可以减少磁盘IO次数,提升性能。
此时task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写,会产生多个临时文件,最后会将之前所有的临时文件都进行合并,最后会合并成为一个大文件。最终只剩下两个文件,一个是合并之后的数据文件,一个是索引文件(标识了下游各个task的数据在文件中的start offset与end offset)。最终再由下游的task根据索引文件读取相应的数据文件。
此时task会为每个下游task都创建一个临时磁盘文件,并将数据按key进行hash然后根据key的hash值,将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。
bypass机制与普通SortShuffleManager运行机制的不同在于:
第一,磁盘写机制不同;
第二,不会进行排序。
也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。
触发bypass机制的条件:
shuffle map task的数量小于spark.shuffle.sort.bypassMergeThreshold参数的值(默认200)或者不是聚合类的shuffle算子(比如groupByKey)
主要是调整缓冲的大小,拉取次数重试重试次数与等待时间,内存比例分配,是否进行排序操作等等
参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小(默认是32K)。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
spark.shuffle.io.retryWait:huffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。(默认是3次)
spark.shuffle.io.retryWait:该参数代表了每次重试拉取数据的等待间隔。(默认为5s)
调优建议:一般的调优都是将重试次数调高,不调整时间间隔。
参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例。
参数说明:该参数用于设置shufflemanager的类型(默认为sort)。Spark1.5x以后有三个可选项:
Hash:spark1.x版本的默认值,HashShuffleManager
Sort:spark2.x版本的默认值,普通机制,当shuffle read task 的数量小于等于spark.shuffle.sort.bypassMergeThreshold参数,自动开启bypass 机制
tungsten-sort:
参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些
参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,也就是开启优化后的HashShuffleManager。
调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。