本演示文稿将介绍生存分析 ,参考:
Clark, T., Bradburn, M., Love, S., & Altman, D. (2003). Survival analysis part I: Basic concepts and first analyses. 232-238. ISSN 0007-0920.
我们今天将使用的一些软件包包括:
lubridate
survival
survminer
library(survival)
library(survminer)
library(lubridate)
事件时间数据由不同的开始时间和结束时间组成。
癌症的例子
事件发生时间数据在许多领域都很常见,包括但不限于
由于生存分析在许多其他领域很常见,因此也有其他名称
数据包含来自北中部癌症治疗组的晚期肺癌患者。今天我们将用来演示方法的一些变量包括
RICH JT,NEELY JG,PANIELLO RC,VOELKER CCJ,NUSSENBAUM B,WANG EW。理解KAPLAN-MEIER曲线的实用指南。耳鼻咽喉头颈外科:美国耳鼻咽喉头颈外科学会官方杂志。2010; 143(3):331-336。doi:10.1016 / j.otohns.2010.05.007。
某个主题可能由于以下原因而被审查:
具体来说,这些是审查的示例。
在此示例中,我们将如何计算10年无事件的比例?
受试者2、3、5、6、8、9和10 在10年时都是无事件的。受试者4和7 在10年之前发生了该事件。主题1 在10年之前已被审查,因此我们不知道他们是否在10年之前有此事件-我们如何将该主题纳入我们的估计中?
对于主题ii:
活动时间TiTi
审查时间CiCi
事件指标δiδi:
观测时间Yi=min(Ti,Ci)Yi=min(Ti,Ci)
lung
数据中提供了观察时间和事件指示
数据通常带有开始日期和结束日期,而不是预先计算的生存时间。第一步是确保将这些格式设置为R中的日期。
让我们创建一个小的示例数据集,其中sx_date
包含手术日期和last_fup_date
上次随访日期的变量。
date_ex <-
tibble(
sx_date = c("2007-06-22", "2004-02-13", "2010-10-27"),
last_fup_date = c("2017-04-15", "2018-07-04", "2016-10-31")
)
date_ex
## # A tibble: 3 x 2
## sx_date last_fup_date
##
## 1 2007-06-22 2017-04-15
## 2 2004-02-13 2018-07-04
## 3 2010-10-27 2016-10-31
我们看到它们都是字符变量,通常都是这种情况,但是我们需要将它们格式化为日期。
date_ex %>%
mutate(
sx_date = as.Date(sx_date, format = "%Y-%m-%d"),
last_fup_date = as.Date(last_fup_date, format = "%Y-%m-%d")
)
## # A tibble: 3 x 2
## sx_date last_fup_date
##
## 1 2007-06-22 2017-04-15
## 2 2004-02-13 2018-07-04
## 3 2010-10-27 2016-10-31
R
格式必须包含分隔符和符号。例如,如果您的日期格式为m / d / Y,则需要format = "%m/%d/%Y"
我们还可以使用该lubridate
包来格式化日期。在这种情况下,请使用ymd
功能
date_ex %>%
mutate(
sx_date = ymd(sx_date),
last_fup_date = ymd(last_fup_date)
)
## # A tibble: 3 x 2
## sx_date last_fup_date
##
## 1 2007-06-22 2017-04-15
## 2 2004-02-13 2018-07-04
## 3 2010-10-27 2016-10-31
R
选项不同,不需要指定分隔符现在日期已格式化,我们需要以某些单位(通常是几个月或几年)计算开始时间和结束时间之间的差。在base中R
,用于difftime
计算两个日期之间的天数,然后使用将其转换为数字值as.numeric
。然后将除以365.25
年的平均天数转换为年。
date_ex %>%
mutate(
os_yrs =
as.numeric(
difftime(last_fup_date,
sx_date,
units = "days")) / 365.25
)
## # A tibble: 3 x 3
## sx_date last_fup_date os_yrs
##
## 1 2007-06-22 2017-04-15 9.82
## 2 2004-02-13 2018-07-04 14.4
## 3 2010-10-27 2016-10-31 6.01
操作员可以%--%
指定一个时间间隔,然后使用将该时间间隔转换为经过的秒数as.duration
,最后除以dyears(1)
,将其转换为年数,从而得出一年中的秒数。
## # A tibble: 3 x 3
## sx_date last_fup_date os_yrs
##
## 1 2007-06-22 2017-04-15 9.82
## 2 2004-02-13 2018-07-04 14.4
## 3 2010-10-27 2016-10-31 6.02
对于生存数据的组成部分,我提到了事件指示器:
事件指标δiδi:
在lung
数据中,我们有:
受试者可以存活超过指定时间的概率
S(t)S(t):生存函数F(t)=Pr(T≤t)F(t)=Pr(T≤t):累积分布函数
理论上,生存函数是平滑的;在实践中,我们以离散的时间尺度观察事件。
Kaplan-Meier方法是估计生存时间和概率的最常用方法。这是一种非参数方法,可产生阶跃函数,每次事件发生时,阶跃下降。
+
如果主题是经过审查的,则后面跟一个。让我们看一下前10个观察值:## [1] 306 455 1010+ 210 883 1022+ 310 361 218 166
survfit
函数根据公式创建生存曲线。让我们为整个同类群组生成总体生存曲线,将其分配给object f1
,然后查看names
该对象的:names(f1)
## [1] "n" "time" "n.risk" "n.event" "n.censor"
## [6] "surv" "std.err" "cumhaz" "std.chaz" "start.time"
## [11] "type" "logse" "conf.int" "conf.type" "lower"
## [16] "upper" "call"
该survfit
对象将用于创建生存曲线的一些关键组件包括:
time
,其中包含每个时间间隔的起点和终点surv
,其中包含每个对应的生存概率 time
现在, 绘制对象 获得Kaplan-Meier图。
plot(survfit(Surv(time, status) ~ 1, data = lung),
xlab = "Days",
ylab = "Overall survival probability")
R
中的默认图显示了具有相关置信区间(虚线)的阶跃函数(实线) 建立在上ggplot2
,并可用于创建Kaplan-Meier图。
censor = FALSE
生存分析中经常需要关注的一个数量是生存超过一定数量(xx)年的概率。
例如,要估算生存到11年的可能性
## Call: survfit(formula = Surv(time, status) ~ 1, data = lung)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 365 65 121 0.409 0.0358 0.345 0.486
我们发现本研究中11年生存的机率是41%。
同时显示95%置信区间的相关上下限。
如果 使用“天真”的估计会怎样?
228名患者中的121名到1年时死亡,因此:
-当 忽略42名患者在1年之前受到检查的事实时, 会错误估计1个1个年生存率。
生存分析中经常需要关注的另一个数量是平均生存时间,我们使用中位数对其进行量化。预计生存时间不会呈正态分布,因此平均值不是适当的总结。
## Call: survfit(formula = Surv(time, status) ~ 1, data = lung)
##
## n events median 0.95LCL 0.95UCL
## 228 165 310 285 363
我们看到中位生存时间为310天。还会显示95%置信区间的上限和下限。
总结165例死亡患者的中位生存时间
## median_surv
## 1 226
我们使用 函数获得对数秩p值。例如,我们可以根据lung
数据中的性别测试是否存在生存时间差异
## Call:
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## sex=1 138 112 91.6 4.55 10.3
## sex=2 90 53 73.4 5.68 10.3
##
## Chisq= 10.3 on 1 degrees of freedom, p= 0.001
从 结果中提取p值
1 - pchisq(sd$chisq, length(sd$n) - 1)
## [1] 0.001311165
返回格式化的p值
## [1] 0.001
我们可能想量化单个变量的效应大小,或者将多个变量包括在回归模型中以说明多个变量的效应。
Cox回归模型是半参数模型,可用于拟合具有生存结果的单变量和多变量回归模型。
h(t)h(t):危险或事件发生的瞬时速率h0(t)h0(t):基本基准危险
该模型的一些关键假设:
注意:也可以使用用于生存结果的参数回归模型,但是本培训将不涉及这些模型。
我们可以使用coxph
函数拟合生存数据的回归模型,该函数Surv
在左侧使用一个对象,而在右侧具有用于回归公式的标准语法R
。
## Call:
##
## coef exp(coef) se(coef) z p
## sex -0.5310 0.5880 0.1672 -3.176 0.00149
##
## Likelihood ratio test=10.63 on 1 df, p=0.001111
## n= 228, number of events= 165
来自Cox回归模型的关注数量是危险比(HR)。HR表示在任何特定时间点两组之间的危险比率。
HR被解释为感兴趣事件中那些仍处于事件风险中的事件的瞬时发生率。
如果您有一个回归参数ββ(来自estimate
我们的列coxph
),则HR = 经验值(β)经验值(β)。
HR <1表示死亡危险降低,而HR> 1表示死亡危险增加。
因此,我们的HR = 0.59意味着在任何给定时间,女性死亡的人数大约是男性的0.6倍。
在第1部分中,我们介绍了使用对数秩检验和Cox回归来检验感兴趣的协变量与生存结果之间的关联。
示例:从治疗开始就测量总生存期,关注的是对治疗的完全反应与生存之间的关联。
Anderson, J., Cain, K., & Gelber, R. (1983). Analysis of survival by tumor response. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 1(11), 710-9.
癌症研究中可能尚未关注的其他一些可能的协变量包括:
137例骨髓移植患者的数据。 变量包括:
T1
死亡时间或最后一次随访时间(天)delta1
死亡指标;1死0活TA
急性移植物抗宿主病的时间(以天为单位)deltaA
急性移植物抗宿主病指标;1-发展为急性移植物抗宿主病,0-从未发展为急性移植物抗宿主病让我们加载数据以供整个示例使用
在BMT
数据感兴趣的是急性移植物抗宿主病(aGVHD)和存活之间的关联。但是aGVHD是在移植后进行评估的,这是我们的基线,也就是后续随访的开始时间。
步骤1选择地标时间
通常,aGVHD发生在移植后的前90天内,因此我们使用90天的界标。
人们对急性移植物抗宿主病(aGVHD)与生存之间的关系感兴趣。但是aGVHD是在移植后进行评估的,这是我们的基线,也就是后续随访的开始时间。
第2步:至少跟踪到里程碑时间之前的人群的子集
这将我们的样本量从137减少到122。
人们对急性移植物抗宿主病(aGVHD)与生存之间的关系感兴趣。但是aGVHD是在移植后进行评估的,这是我们的基线,也就是后续随访的开始时间。
步骤3根据地标计算随访时间,并应用传统方法。
界标分析的替代方法是合并时间相关的协变量。这可能更适合
对时间相关协变量的分析R
需要建立特殊的数据集。
BMT
数据中没有ID变量,这是创建特殊数据集所必需的,因此请创建一个名为的变量my_id
。
将tmerge
函数与event
和函数一起使用tdc
可创建特殊数据集。
tmerge
为每个患者的不同协变量值创建一个具有多个时间间隔的长数据集event
创建新的事件指示器,以与新创建的时间间隔一致tdc
创建与时间相关的协变量指标,以与新创建的时间间隔一致要了解其作用,让我们看一下前5名患者的数据。
## my_id T1 delta1 TA deltaA
## 1 1 2081 0 67 1
## 2 2 1602 0 1602 0
## 3 3 1496 0 1496 0
## 4 4 1462 0 70 1
## 5 5 1433 0 1433 0
这些相同患者的新数据集
## my_id T1 delta1 id tstart tstop death agvhd
## 1 1 2081 0 1 0 67 0 0
## 2 1 2081 0 1 67 2081 0 1
## 3 2 1602 0 2 0 1602 0 0
## 4 3 1496 0 3 0 1496 0 0
## 5 4 1462 0 4 0 70 0 0
## 6 4 1462 0 4 70 1462 0 1
## 7 5 1433 0 5 0 1433 0 0
我们发现,使用标志性分析或时间依赖性协变量,急性移植物抗宿主病与死亡无显着相关性。
通常,人们会希望使用地标分析对单个协变量进行可视化, 使用带有时间相关协变量的Cox回归进行单变量和多变量建模。
当对象在事件发生时间设置中发生多个可能的事件时
例子:
在任何给定的研究中,所有这些(或其中一些 以及其他)可能都是可能的事件。
事件时间之间未观察到的依赖性是导致需要特殊考虑的基本问题。
例如,可以想象复发的患者更有可能死亡,因此复发时间和死亡时间将不是独立事件。
存在多种潜在结果时的两种分析方法:
这些方法中的每一种都可能仅阐明数据的一个重要方面,而有可能使其他方面难以理解,因此所选的方法应取决于感兴趣的问题。
它包含变量:
time
生存时间以天为单位,可能经过审查。status
1例死于黑色素瘤,2例存活,3例因其他原因死亡。sex
1 =男性,0 =女性。age
年岁。year
操作。thickness
肿瘤厚度(毫米)。ulcer
1 =存在,0 =不存在。在竞争风险的背景下估算累积发生率。
## Estimates and Variances:
## $est
## 1000 2000 3000 4000 5000
## 1 1 0.12745714 0.23013963 0.30962017 0.3387175 0.3387175
## 1 3 0.03426709 0.05045644 0.05811143 0.1059471 0.1059471
##
## $var
## 1000 2000 3000 4000 5000
## 1 1 0.0005481186 0.0009001172 0.0013789328 0.001690760 0.001690760
## 1 3 0.0001628354 0.0002451319 0.0002998642 0.001040155 0.001040155
用于组间测试。
例如,Melanoma
根据ulcer
溃疡的存在与否比较结果。测试结果可以在中找到Tests
。
ci_ulcer[["Tests"]]
## stat pv df
## 1 26.120719 3.207240e-07 1
## 3 0.158662 6.903913e-01 1
请注意,我个人发现该ggcompetingrisks
功能缺少自定义功能,尤其是与相比ggsurvplot
。我通常会自己做图,首先创建cuminc
拟合结果的整洁数据集,然后再绘制结果。有关底层代码的详细信息,请参见此演示文稿的
通常,只有一种类型的事件会引起人们的兴趣,尽管我们仍要考虑竞争事件。在那种情况下,感兴趣的事件可以单独绘制。同样,我首先通过创建cuminc
拟合结果的整洁数据集,然后绘制结果来手动执行此操作。有关底层代码的详细信息,请参见此演示文稿的源代码。
您可能想将风险表的数量添加到累积发生率图中,而据我所知,没有简单的方法可以做到这一点。请参阅此演示文稿的源代码中的一个示例
两种方法:
假设我们有兴趣研究年龄和性别对黑色素瘤死亡的影响,而其他原因的死亡则是竞争事件。
crr
需要指定协变量作为矩阵failcode
选项请求其他事件的结果,默认情况下会返回failcode = 1
shr_fit
## convergence: TRUE
## coefficients:
## sex age
## 0.58840 0.01259
## standard errors:
## [1] 0.271800 0.009301
## two-sided p-values:
## sex age
## 0.03 0.18
在上一个示例中,sex
和和age
均被编码为数字变量。 如果存在字符变量,则必须使用model.matrix
可能会出现很多零碎的东西 :
Cox比例风险回归模型的一个假设是,在整个随访过程中,风险在每个时间点都是成比例的。我们如何检查数据是否符合此假设?
使用cox.zph
生存包中的功能。结果有两点:
print(cz)
## rho chisq p
## sex 0.1236 2.452 0.117
## age -0.0275 0.129 0.719
## GLOBAL NA 2.651 0.266
plot(cz)
有时,在已经存活了一段时间的患者中产生存活率估计值很有意义。
Zabor, E., Gonen, M., Chapman, P., & Panageas, K. (2013). Dynamic prognostication using conditional survival estimates. Cancer, 119(20), 3589-3592.