【告别小白】操作系统OS的概念和原理是什么?

本文总结自wiki
操作系统(英语:Operating System,缩写:OS)是管理计算机硬件与软件资源的系统软件,同时也是计算机系统的内核与基石。操作系统需要处理如管理与配置内存决定系统资源供需的优先次序控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统也提供一个让用户与系统交互的操作界面

操作系统的类型非常多样:Windows、Linux、Android、iOS、鸿蒙。有些操作系统集成了图形用户界面,而有些仅使用命令行界面。

操作系统理论研究者有时把操作系统分成四大部分:

驱动程序 - 最底层的、直接控制和监视各类硬件的部分,它们的职责是隐藏硬件的具体细节,并向其他部分提供一个抽象的、通用的接口。
内核 - 操作系统之最内核部分,通常运行在最高特权级,负责提供基础性、结构性的功能。
支承库 - (亦作“接口库”)是一系列特殊的程序库,它们职责在于把系统所提供的基本服务包装成应用程序所能够使用的编程接口(API),是最靠近应用程序的部分。例如,GNU C运行期库就属于此类,它把各种操作系统的内部编程接口包装成ANSI C和POSIX编程接口的形式。
外围 - 所谓外围,是指操作系统中除以上三类以外的所有其他部分,通常是用于提供特定高级服务的部件。例如,在微内核结构中,大部分系统服务,以及UNIX/Linux中各种守护进程都通常被划归此列。操作系统的分类没有一个单一的标准,可以根据工作方式分为批处理操作系统、分时操作系统、实时操作系统、网络操作系统和分布式操作系统等;根据架构可以分为单内核操作系统等;根据运行的环境,可以分为桌面操作系统,嵌入式操作系统等;根据指令的长度分为8bit, 16bit, 32bit, 64bit的操作系统。

操作系统中四大部分的不同布局,也就形成了几种整体结构的分野。常见的结构包括:简单结构、层结构、微内核结构、垂直结构、和虚拟机结构
操作系统的分类没有一个单一的标准,可以根据工作方式分为批处理操作系统、分时操作系统、实时操作系统、网络操作系统和分布式操作系统等;根据架构可以分为单内核操作系统等;根据运行的环境,可以分为桌面操作系统,嵌入式操作系统等;根据指令的长度分为8bit, 16bit, 32bit, 64bit的操作系统。

内核结构
内核是操作系统最内核最基础的构件,其结构往往对操作系统的外部特性以及应用领域有着一定程度的影响。尽管随着理论和实践的不断演进,操作系统高层特性与内核结构之间的耦合有日趋缩小之势,但习惯上,内核结构仍然是操作系统分类之常用标准。

内核的结构可以分为单内核、微内核、超微内核、以及外核等。

单内核结构是操作系统中各内核部件杂然混居的形态,该结构产生于1960年代(亦有1950年代初之说,尚存争议),历史最长,是操作系统内核与外围分离时的最初形态。

微内核结构是1980年代产生出来的较新的内核结构,强调结构性部件与功能性部件的分离。20世纪末,基于微内核结构,理论界中又发展出了超微内核与外内核等多种结构。尽管自1980年代起,大部分理论研究都集中在以微内核为首的“新兴”结构之上,然而,在应用领域之中,以单内核结构为基础的操作系统却一直占据着主导地位。

在众多常用操作系统之中,除了QNX和基于Mach的UNIX等个别系统外,几乎全部采用单内核结构,例如大部分的Unix、Linux,以及Windows(微软声称Windows NT是基于改良的微内核架构的,尽管理论界对此存有异议)。 微内核和超微内核结构主要用于研究性操作系统,还有一些嵌入式系统使用外核。

基于单内核的操作系统通常有着较长的历史渊源。例如,绝大部分UNIX的家族史都可上溯至1960年代。该类操作系统多数有着相对古老的设计和实现(例如某些UNIX中存在着大量1970年代、1980年代的代码)。另外,往往在性能方面略优于同一应用领域中采用其他内核结构的操作系统(但通常认为此种性能优势不能完全归功于单内核结构)。

通用与专用、嵌入式
通用操作系统是面向一般没有特定应用需求的操作系统。由于没有特定的应用需求,通用操作系统为了适应更广泛的应用,需要支持更多的硬件与软件,需要针对所有的用户体验,对系统进行更新。通用操作系统是一个工程量繁重的操作系统。

实时与非实时
“实时操作系统”(Real Time OS)泛指所有据有一定实时资源调度以及通讯能力的操作系统。而所谓“实时”,不同语境中往往有着非常不同的意义。某些时候仅仅用作“高性能”的同义词。但在操作系统理论中“实时性”所指的通常是特定操作所消耗的时间(以及空间)的上限是可预知的。比如,如果说某个操作系统提供实时内存分配操作,那也就是说一个内存分配操作所用时间(及空间)无论如何也不会超出操作系统所承诺的上限。实时性在某些领域非常重要,比如在工业控制、医疗器材、影音频合成、以及军事领域,实时性都是无可或缺的特性。

常用实时操作系统有QNX、VxWorks、RTLinux等等,而Linux、多数UNIX、以及多数Windows家族成员等都属于非实时操作系统。操作系统整体的实时性通常依仗内核的实时能力,但有时也可在非实时内核上创建实时操作系统,很多在Windows上创建的实时操作系统就属于此类。

在POSIX标准中专有一系用于规范实时操作系统的API,其中包括POSIX.4、POSIX.4a、POSIX.4b(合称POSIX.4)以及POSIX.13等等。符合POSIX.4的操作系统通常被认可为实时操作系统(但实时操作系统并不需要符合POSIX.4标准)。

8位、16位、32位、64位、128位
所谓8位、16位、32位、64位、128位等术语有时指总线宽度,有时指指令宽度(在定长指令集中),而在操作系统理论中主要是指存储器定址的宽度。如果存储器的定址宽度是16位,那么每一个存储器地址可以用16个二进制位来表示,也就是说可以在64KB的范围内定址。同样道理32位的宽度对应4GB的定址范围,64位的宽度对应16 Exabyte的定址范围。存储器定址范围并非仅仅是对操作系统而言的,其他类型的软件的设计有时也会被定址范围而影响。但是在操作系统的设计与实现中,定址范围却有着更为重要的意义。

在早期的16位操作系统中,由于64KB的定址范围太小,大都都采用“段”加“线性地址”的二维平面地址空间的设计。分配存储器时通常需要考虑“段置换”的问题,同时,应用程序所能够使用的地址空间也往往有比较小的上限。

在32位操作系统中,4GB的定址范围对于一般应用程序来说是绰绰有余的,因而,通常使用一维的线性地址空间,而不使用“段”。

你可能感兴趣的:(计算机基础)