建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学管理员,你想根据两次考试的结果 来决定每个申请人的录取机会,你有以前申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训 例子,有两个考试的申请人的分数和录取决定,为了做到这一点,建立一个分类模型,根据考试成绩估计入学概率。
导入数据,并读取数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
pdData=pd.read_csv("LogiReg_data.txt",header=None,names=['Exam1','Exam2','Admitted'])
print(pdData.head())
画图:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
pdData=pd.read_csv("LogiReg_data.txt",header=None,names=['Exam1','Exam2','Admitted'])
# print(pdData.head())
# print(pdData.shape)
#画图
positive=pdData[pdData["Admitted"]==1]
negative=pdData[pdData["Admitted"]==0]
fig,ax=plt.subplots(figsize=(10,5))#指定画图域
#散点图
ax.scatter(positive['Exam1'],positive["Exam2"],s=30,c='b',marker='o',label="Admitted")
ax.scatter(negative['Exam1'],negative["Exam2"],s=30,c='r',marker='x',label="Not Admitted")
ax.legend()
ax.set_xlabel("Exam1 Score")
ax.set_ylabel("Exam2 Score")
plt.show()
目标:建立分类器(求解出三个参数Θ0,Θ1,Θ2)
设定阈值,根据阈值判断录取结果
sigmoid函数:
def sigmoid(z):
return 1/(1+np.exp(-z))
损失函数
#预测函数
def model(X,theta):
return sigmoid(np.dot(X,theta.T))
pdData.insert(0,"Ones",1)#加入一列
orig_data=pdData.as_matrix()
cols=orig_data.shape[1]
X=orig_data[:,0:cols-1]
y=orig_data[:,cols-1:cols]
theta=np.zeros([1,3])
#print(X)
#print(y)
#print(theta)
def cost(X,y,theta):
left=np.multiply(-y,np.log(model(X,theta)))
right=np.multiply(1-y,np.log(1-model(X,theta)))
return np.sum(left-right)/len(X)
计算梯度:
def gradient(X,y,theta):
grad=np.zeros(theta.shape)
error=(model(X,theta)-y).ravel()
for i in range(len(theta.ravel())):
term=np.multiply(error,X[:,j])
grad[0,j]=np.sum(term)/len(X)
return grad
Gradient descent
比较3种不同梯度下降方法:
#完整代码:
"""
建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学管理员,你想根据两次考试的结果
来决定每个申请人的录取机会,你有以前申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训
例子,有两个考试的申请人的分数和录取决定,为了做到这一点,建立一个分类模型,根据考试成绩估计入学概率
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
pdData=pd.read_csv("LogiReg_data.txt",header=None,names=['Exam1','Exam2','Admitted'])
# print(pdData.head())
# print(pdData.shape)
#画图
positive=pdData[pdData["Admitted"]==1]
negative=pdData[pdData["Admitted"]==0]
fig,ax=plt.subplots(figsize=(10,5))#指定画图域
#散点图
ax.scatter(positive['Exam1'],positive["Exam2"],s=30,c='b',marker='o',label="Admitted")
ax.scatter(negative['Exam1'],negative["Exam2"],s=30,c='r',marker='x',label="Not Admitted")
ax.legend()
ax.set_xlabel("Exam1 Score")
ax.set_ylabel("Exam2 Score")
#plt.show()
def sigmoid(z):
return 1/(1+np.exp(-z))
#预测函数
def model(X,theta):
return sigmoid(np.dot(X,theta.T))
pdData.insert(0,"Ones",1)#加入一列
orig_data=pdData.as_matrix()
cols=orig_data.shape[1]
X=orig_data[:,0:cols-1]
y=orig_data[:,cols-1:cols]
theta=np.zeros([1,3])
#print(X)
#print(y)
#print(theta)
def cost(X,y,theta):
left=np.multiply(-y,np.log(model(X,theta)))
right=np.multiply(1-y,np.log(1-model(X,theta)))
return np.sum(left-right)/len(X)
print(cost(X,y,theta))
def gradient(X,y,theta):
grad=np.zeros(theta.shape)
error=(model(X,theta)-y).ravel()
for j in range(len(theta.ravel())):
term=np.multiply(error,X[:,j])
grad[0,j]=np.sum(term)/len(X)
return grad
STOP_ITER=0#根据迭代次数停止
STOP_COST=1#根据迭代损失停止
STOP_GRAD=2#根据梯度
def stopCriterion(type,value,threshold):
#设定三种不同停止策略
if type==STOP_ITER:
return value>threshold
elif type==STOP_COST:
return abs(value[-1]-value[-2])=n:
k=0
X,y=shuffleData(data)#重新洗牌
theta=theta-alpha*grad#参数更新
costs.append(cost(X,y,theta))#计算新的损失
i+=1
if stopType==STOP_ITER:
value=1
elif stopType==STOP_COST:
value=costs
elif stopType==STOP_GRAD:
value=grad
if stopCriterion(stopType,value,thresh):
break
return theta,i-1,costs,grad,time.time()-init_time
def runExpe(data,theta,batchSize,stopType,thresh,alpha):
theta,iter,costs,grad,dur=descent(data,theta,batchSize,stopType,thresh,alpha
)
name="Orignal" if(data[:,1]>2).sum()>1 else "Scaled"
name+= " data - learning rate:{}=".format(alpha)
if batchSize==n:strDescType="Gradient"
elif batchSize==1:strDescType="Stochastic"
else:strDescType="Mini-batch({})".format(batchSize)
name+=strDescType+" desent - Stop:"
if stopType ==STOP_ITER:strStop="{}iterations".format(thresh)
elif stopType==stopType==STOP_COST:strStop="costs change<{}".format(thresh)
else:strStop="gradient norm<{}".format(thresh)
name+=strStop
print('***{}\nTheta:{}-Iter:{}-Last cost{:03.2f}-Duration :{:03.2f}s'.format(name,theta,iter,costs[-1],dur))
fig,ax=plt.subplots(figsize=(12,4))
ax.plot(np.arange(len(costs)),costs,'r')
ax.set_xlabel("Iterations")
ax.set_ylabel("Costs")
ax.set_title(name.upper()+' -Error vs:Iteration')
return theta
n=100
runExpe(orig_data,theta,n,STOP_ITER,thresh=5000,alpha=0.000001)
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1