- 密码学协议在SSL/TLS证书体系中的深度解析
安全
摘要:本文从密码学协议演进视角,系统剖析SSL/TLS证书体系的实现机理与安全边界。聚焦TLS1.3协议标准,揭示椭圆曲线密码体制(ECC)与混合密钥交换机制的协同运作,探讨证书透明度(CT)系统的密码学验证模型,并构建后量子时代数字证书的迁移路径框架。一、SSL/TLS协议栈的密码学架构演进X.509证书的密码学基因由PKI体系决定,其信任锚点植根于CA机构的数字签名算法选择。TLS1.3协议废
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- aixbt 被盗 55.5 ETH,本就孱弱的 AI 代理叙事会「雪上加霜」吗
人工智能区块链以太坊
作者:Techub热点速递撰文:Yangz,TechubNews在大部分行业目光都投向币安「组合拳」引发的BNBChain热潮、OKX因合规问题暂停DEX聚合服务以及Solana深陷政治广告风波的同时,周一CT上爆出的关于头部AI代理aixbt被「钓鱼诈骗」55.5ETH一事再次引发了社区关于AI代理叙事可持续性的思考。不少用户担忧,目前本就孱弱的AI代理叙事是否会因此「雪上加霜」?周一下午,多名
- aixbt 被盗 55.5 ETH,本就孱弱的 AI 代理叙事会「雪上加霜」吗
人工智能区块链以太坊
作者:Techub热点速递撰文:Yangz,TechubNews在大部分行业目光都投向币安「组合拳」引发的BNBChain热潮、OKX因合规问题暂停DEX聚合服务以及Solana深陷政治广告风波的同时,周一CT上爆出的关于头部AI代理aixbt被「钓鱼诈骗」55.5ETH一事再次引发了社区关于AI代理叙事可持续性的思考。不少用户担忧,目前本就孱弱的AI代理叙事是否会因此「雪上加霜」?周一下午,多名
- innovus命令每日精要 | setCheckMode:数字后端物理设计的必备神器
数字后端物理设计知识库
innovus命令每日精要后端性能优化
在数字后端物理设计的领域中,确保设计数据的完整性和正确性是至关重要的。今天,我们要深入探讨的是Innovus中的一个强大命令——setCheckMode。这个命令就像是你的设计流程中的“健康卫士”,能够在各个阶段帮你揪出潜在的数据问题,避免因小失大,让错误在流程中扩散。检查模式核心功能大揭秘1.设计数据完整性检查:全面扫描,无死角-all选项就像是给你的设计做一次“全身CT”,开启所有检查选项,确
- MM-RAIT:多模态检索增强生成(RAG)的认知革命
花生糖@
AIGC学习资料库人工智能深度学习机器学习RAGAI知识库
多模态检索增强生成(RAG)领域迎来了一项里程碑式的突破——MM-RAIT框架通过“评估-训练”双轮驱动,显著提升了主流视觉语言模型的RAG性能,增幅达27%至34%。这项技术不仅解决了多模态AI的认知断层问题,还首次赋予机器类似人类的知识处理能力,即“查资料-思逻辑-答精准”的能力。技术双引擎:从能力测绘到认知进化M2RAG:多模态能力的CT扫描仪M2RAG引入了首创的四维评估体系,覆盖图像描述
- 【AVRCP】Notification PDUs 深入解析与应用
byte轻骑兵
蓝牙技术探索与应用音频/视频控制蓝牙技术AVRCP
目录一、NotificationPDUs概述二、GetPlayStatus:同步查询播放状态2.1命令功能与应用场景2.2请求格式(CT→TG)2.3响应格式(TG→CT)2.4注意事项2.5协议实现示例(伪代码)三、RegisterNotification:异步事件订阅3.1命令概述3.2命令格式3.3响应格式①EVENT_PLAYBACK_STATUS_CHANGED(通知播放状态的改变)②E
- 分页、渲染、读取静态资源.
数据潜水员
node.js
###分页```jsimport{Arrays}from'../Db/BooksDb.js'constlist=async(ctx,next)=>{//转换为数字类型constpage=parseInt(ctx.query.pageIndex)||1constsize=parseInt(ct
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- 清华团队发布多模态“神探”Migician:24.94%性能碾压,解锁多图定位的无限可能—— 安防、自动驾驶、医疗影像的AI“鹰眼”革命
花生糖@
AIGC学习资料库人工智能自动驾驶机器学习
引言:当AI学会“跨图追凶”2025年,安防监控摄像头每天产生3.5万亿帧画面,自动驾驶汽车每秒处理20路传感器图像,医疗影像科医生年均分析50万张CT片——多图像定位能力已成为AI落地的命门。清华大学联合北交大、华中科大发布的Migician模型,凭借24.94%的性能碾压优势,让AI首次实现“跨图像精准狙击”。这个突破性工具,正在重新定义从安防到医疗的20+行业规则。一、技术深析:Migici
- PHP 将图片url,写入到文件夹中,导出到zip下载到桌面
huazeci
php
一:将图片写入到文件内文件url:比如【https://image.baidu.com/search/detail?ct=503316480&z=0&ipn=false&word=%E5%9B%BE%E7%89%87%E5%A4%B4%E5%83%8F&hs=0&pn=1&spn=0&di=7466852183703552001&pi=0&rn=1&tn=baiduimagedetail&is=3
- OpenGL 3D纹理
令狐掌门
C++OpenGL3d性能优化OpenGL3D
理论基础3D纹理(也称为体积纹理)是纹理映射的扩展,从2D平面扩展到3D空间。与2D纹理不同,3D纹理在三个维度上存储数据(宽度、高度和深度),允许在整个3D空间中采样,而不仅仅是在平面上。3D纹理的主要特性和用途:体积数据表示:用于表示完整的3D数据集,如医学扫描(CT、MRI)、气象数据等空间采样:允许在3D空间中的任意位置进行纹理采样层次细节:支持类似2D纹理的MipMap功能,但在三维空间
- 深度学习实战:用TensorFlow构建高效CNN的完整指南
芯作者
DD:日记深度学习
一、为什么每个开发者都要掌握CNN?在自动驾驶汽车识别路标的0.1秒里,在医疗AI诊断肺部CT片的精准分析中,甚至在手机相册自动分类宠物的日常场景里,卷积神经网络(CNN)正悄然改变着我们的世界。本文将以工业级实践标准,带您从零构建一个在CIFAR-10数据集上达到90%+准确率的CNN模型,深入解析TensorFlow2.x的最新特性,并揭秘模型优化的七大核心策略。[外链图片转存失败,源站可能有
- c# 不可访问 因为它受保护级别限制
CptainLee
c#c#不可访问因为它受保护级别限制
usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Text;namespacePropertyText{classProgram{staticvoidMain(string[]args){classTextct=newclassText("李刚");Console.WriteLine(ct.name);
- IDEA入门及常用快捷键
tyrolin
intellij-ideajavaide
IDEA是java常用的IDE。当run一个.java文件时,其实是经历了先编译为.class,再运行的过程。在project文件夹中,out文件夹存储编译的.class文件,src文件夹存储.java代码文件。设置自动导包快捷键:格式化快捷键:Control+alt+L生成构造器,右键generate,constructor光标点到类,查看类的层级关系,ctrl+H光标点到方法,定位到方法,ct
- arm64 kvm 常用 macro
GoGoGavin
kvm
Linuxkernel:5.12cpu:arm64generalpurpose寄存器赋值:以后更新sys寄存器:__vcpu_sys_reg(vcpu,reg)__vcpu_sys_reg(vcpu,reg)=val;#define__vcpu_sys_reg(v,r)(ctxt_sys_reg(&(v)->arch.ctxt,(r)))#definectxt_sys_reg(c,r)(*__ct
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- 如何解析DICOM文件中的Pixel Data ?
雪下的那么认真
DICOM
DICOM文件可以大致分为两部分:一部分:与图像相关的元信息,包括患者信息,检查信息,序列信息,图像信息等等。另一部分:图像的像素数据。在解析DICOM文件中的像素数据的时候,我们先需要读取以下图像相关信息:以下是某个CT影像中的图像信息示例:(0028,0002)SamplesperPixelVR:USLength:2Value:1(0028,0004)PhotometricInterpreta
- 小程序租赁系统智能风控与区块链整合
红点聊租赁
其他
内容概要想在小程序里搞租赁生意?光有个扫码入口可不够,得先给系统装上"风险雷达"。这套智能风控闭环就像给平台雇了个24小时不眨眼的AI保安——芝麻信用分刚过及格线?先别急着免押,让央行征信数据再给它做套CT扫描。区块链存证可不是单纯把合同扔进链上就完事,得像给重要文件套上十层防弹玻璃,每次租赁行为都被刻成带时间戳的"数字琥珀",就算遇到老赖扯皮,直接调取司法链上的证据包,分分钟能当庭播放交易全息录
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- 三甲医院网络架构与安全建设实战
kate zhu
网络安全R&SLinux网络安全
一、设计目标实现医疗业务网/卫生专网/互联网三网隔离满足等保2.0三级合规要求保障PACS影像系统低时延传输实现医疗物联网统一接入管控二、全网拓扑架构三、网络分区与安全设计IP/VLAN规划表核心业务配置(华为CE6865)interface100GE1/0/1descriptionPACS-CT-Modalitytrustdscp46#标记EF优先级qosqueueefbandwidth40%#
- C语言综合案例:猜拳游戏1.0
kk努力学编程
c语言游戏开发语言
C语言综合案例:猜拳游戏1.0#include#include#include#include/***需求:猜拳游戏1.0*步骤:1.选择对手2.自己出拳3.对手出拳4.双发比较*/intmain(intargc,char*argv[]){//定义变量intis_stop=1;intis_select_ct=1;intcomputer_no;//对手的序号charcomputer_name[20]
- DEMF模型赋能多模态图像融合,助力肺癌高效分类
cv君
cv君独家视角AI内幕系列深度学习PET-CT集成分类肺部图像多模态图像融合
目录论文创新点实验设计1.可视化的研究设计2.样本选取和数据处理3.集成分类模型4.实验结果5.可视化结果图表总结可视化知识图谱在肺癌早期筛查中,计算机断层扫描(CT)和正电子发射断层扫描(PET)作为两种关键的影像学手段,分别提供了丰富的解剖结构信息和代谢活动信息。然而,单一模态的影像数据在诊断精准度上往往存在瓶颈,难以全面揭示病变特征。因此,如何将多模态影像数据有机融合,以提升诊断效能,已成为
- Ubuntu切换终端快捷键
yangsong4353
ubuntushellterm
在Ubuntu系统中,使用终端(Terminal)进行操作时,掌握一些快捷键可以大大提高工作效率。以下是一些常用的终端快捷键及其功能:打开和关闭终端打开终端:Ctrl+Alt+T关闭终端:Ctrl+D标签页操作新建标签页:Ctrl+Shift+T关闭标签页:Ctrl+Shift+W切换标签页:Alt+数字键(如Alt+1,Alt+2等)或Ctrl+PageUp/PageDown复制和粘贴复制:Ct
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- MONAI 1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型
Tina姐
Monai人工智能
MONAI1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型上周,MONAI发布了备受期待的1.4版本,这是时隔一年的重大更新。新版本带来了一系列令人兴奋的新功能和改进,让我们一起来看看:MAISI:这是一个最先进的3D潜在扩散模型(3DLatentDiffusionModel),专为生成高质量的合成CT图像而设计,无论是否带有解剖标注。MAISI在数据增强和创建逼真的医学成
- DICOM标准详解
浩瀚之水_csdn
三维图像dcm
DICOM(DigitalImagingandCommunicationsinMedicine)标准是医学图像和相关信息的数字图像通信的国际标准。以下是DICOM标准的详细内容:一、概述DICOM标准由医学图像处理和通信的专业组织DICOM标准委员会(DICOMStandardsCommittee)负责维护和更新。它定义了医学影像设备(如X射线、CT扫描、MRI等)生成、存储、传输和显示的规范,以
- 医学影像中缩写如CR、DR、DX、CT医疗术语意义
wangnaisheng
DICOMdicom
医疗术语解释:DigitalRadiography(CR,DX):数字X线摄影Mammography(MG):乳房X射线照相术ComputedTomography(CT):计算机断层扫描MagneticResonance(MR):磁共振PositronEmissionTomographyPET-CT(PT):正电子发射计算机断层扫描PET-CTUltrasonography(US,IVUS):超声
- 学习笔记-三维超声相关知识
May_ZhaoHM
基础知识学习
三维超声相关知识三维超声成像本质是断层成像,和CT与磁共振不同的点在,CT等通常是以缓慢的速度来获取切片的获取。超声高速率,且图像方向可变。二维超声的局限性:依赖于诊断医生的经验和知识来操作超声换能器,将二维图像完全转换成三维组织结构,并进行诊断或执行介入过程。这种困难主要是由于使用空间灵活的二维成像技术来观察三维解剖结构造成的。超声引导的治疗过程尤其受到影响,因为在手术过程中或在一段时间内量化和
- 【揭秘民航黑科技】ETERM指令:航空业背后的强大工具
CAAC_SKY
ETERM交通物流业界资讯职场和发展java人工智能python
一、航班查询与可用性检查AV功能:查询航班座位可用性示例:AVPEKCAN25OCT(查询北京到广州10月25日航班)AVH/AVA功能:分屏显示航班(AVH横向/AVA纵向)SK功能:智能查询最优航班组合(支持多航段、多日期)二、旅客订座记录(PNR)管理PNR创建与修改SD:选择航班并订座(如SDY1选择舱位Y的第1个航班)XN/XNIN:添加婴儿或儿童标识CT:取消整个PNRPNR提取与查看
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理