将自己训练的MASK-RCNN模型用于摄像头实时检测

之前已经训练出自己的MASK-RCNN模型,并在单张图片上经行了测试,那么如何在摄像头中实时检测呢,今天就实现这个功能。其实方法很简单,主要就是获取摄像头的frame,然后对这个frame进行检测就行了。

import cv2
import numpy as np
from mrcnn.config import Config

class MouseConfig(Config):
    """Configuration for training on the toy  dataset.
    Derives from the base Config class and overrides some values.
    """
    # Give the configuration a recognizable name
    NAME = "mouse"
    # We use a GPU with 12GB memory, which can fit two images.
    # Adjust down if you use a smaller GPU.
    IMAGES_PER_GPU = 1
    # Number of classes (including background)
    NUM_CLASSES = 1 + 1  # Background + balloon
    # Number of training steps per epoch
    STEPS_PER_EPOCH = 100
    # Skip detections with < 90% confidence
    DETECTION_MIN_CONFIDENCE = 0.9

def random_colors(N):
    np.random.seed(1)
    colors = [tuple(255 * np.random.rand(3)) for _ in range(N)]
    return colors

def apply_mask(image, mask, color, alpha=0.5):
    for n, c in enumerate(color):
        image[:, :, n] = np.where(
            mask == 1,
            image[:, :, n] * (1 - alpha) + alpha * c,
            image[:, :, n]
        )
    return image

def display_instances(image, boxes, masks, ids, names, scores):
    n_instances = boxes.shape[0]
    if not n_instances:
        print('No instances to display')
    else:
        assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]
    colors = random_colors(n_instances)
    height, width = image.shape[:2]

    for i, color in enumerate(colors):
        if not np.any(boxes[i]):
            continue
        y1, x1, y2, x2 = boxes[i]
        mask = masks[:, :, i]
        image = apply_mask(image, mask, color)
        image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
        label = names[ids[i]]
        score = scores[i] if scores is not None else None
        caption = '{}{:.2f}'.format(label, score) if score else label
        image = cv2.putText(
            image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, color, 2
        )
    return image

if __name__ == '__main__':
    import os
    import sys
    import random
    import utils
    ROOT_DIR = os.path.abspath("../")
    sys.path.append(ROOT_DIR)
    from mrcnn import utils
    import mrcnn.model as modellib
    sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
    MODEL_DIR = os.path.join(ROOT_DIR, "logs")
    COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_mouse_0030.h5")
    print('COCO_MODEL_PATH: ',COCO_MODEL_PATH)
    if not os.path.exists(COCO_MODEL_PATH):
        print('cannot find coco_model')

    class InferenceConfig(MouseConfig):
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1

    config = InferenceConfig()
    config.display()
    model = modellib.MaskRCNN(
        mode="inference", model_dir=MODEL_DIR, config=config
    )
    # Load weights trained on MS-COCO
    model.load_weights(COCO_MODEL_PATH, by_name=True)
    class_names = ['BG', 'mouse', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
                   'bus', 'train', 'truck', 'boat', 'traffic light',
                   'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
                   'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
                   'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
                   'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
                   'kite', 'baseball bat', 'baseball glove', 'skateboard',
                   'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
                   'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
                   'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
                   'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
                   'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
                   'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
                   'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
                   'teddy bear', 'hair drier', 'toothbrush']
    capture = cv2.VideoCapture(1)
    # capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
    # capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
    while True:
        ret, frame = capture.read()
        results = model.detect([frame], verbose=0)
        r = results[0]
        frame = display_instances(
            frame, r['rois'], r['masks'], r['class_ids'],
            class_names, r['scores']
        )
        cv2.imshow('camera1', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    capture.release()
    cv2.destroyAllWindows()

 摄像头实时显示的结果如下:

将自己训练的MASK-RCNN模型用于摄像头实时检测_第1张图片

 参考:https://blog.csdn.net/eereere/article/details/80178595

 

你可能感兴趣的:(python)